
Meson decays from string splitting

Aldo L. Cotrone
University of Barcelona and IFAE

Collaboration with L. Martucci, W. Troost (Leuven University) and F. Bigazzi (Paris VI and VII)

Phys. Rev. Lett. 96 (2006); hep-th/0511045 and hep-th/0606059.

. – p.1/17



Strong coupling gauge theories

The String/Gauge theory correspondence states the equivalence of a string
theory (or M-theory) on a non-trivial background and a gauge theory.

Computations mainly in supergravity: gs � 1⇒ Nc � 1 and small curvatures⇒ strong coupling.

Can study properties of gauge theories, in particular spectra, e.g. glueballs.

Fundamental flavors studied adding Nf “flavor branes”.
[Karch, Katz 2002]: probe approximation Nf � Nc ⇒ ignore backreaction.

Meson spectra: Small brane fluctuations: low spin mesons.
Macroscopic spinning strings: high spin mesons.

Dynamics: decay of a high spin mesons have a description as string splitting.

Study certain exclusive decays of high spin mesons into mesons in models of
large Nc quenched QCD at strong coupling.
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Two “models of QCD”

[Witten 1998]: Nc D4 wrapped on susy breaking circle.
Low energies: 4d large Nc Yang-Mills + KK.

I. [Kruczenski, Mateos, Myers, Winters 2003]: Add Nf � Nc D6 ⇒ massive flavors.

Lower bound for effective quark mass
⇒ Minimum, non-zero value of radial
position of flavor branes.

Large spin J ⇒ string almost “straight”:
Horizon

m
Q

minm

Minkowski

Q

r

Q

II. [Sakai, Sugimoto 2004]: Add Nf � Nc D8/anti-D8 ⇒ massless flavors.

Realization of χSB (massless pions)
but no mass parameter.

String spins on the D8 world-volume: D8

Minkowski

q

q
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The process, Model I

Lighter flavor probe brane q: mass mq < mQ:

r

m

m q

Q

Minkowski

Q

θ

Q

For the metric in the form:

ds2 = eA(r)(−dt2 + dρ2 + ρ2dη2 + dx2
3) + eB(r)dr2 +Gijdφ

idφj

and string configuration: t = τ η = ωτ r = σ ρ = ρ(σ) φi = φiQ

the angle is: cos2 θ =
(ρ′(rq))2

eB(rq)−A(rq)+(ρ′(rq))2
.

If θ 6= π
2 ⇒ net transversal force⇒ string can split: Q̄Q→ Q̄q + q̄Q.

u

m

m q

QQ

q
q

Minkowski

Q

Note: decay highly constrained, no phase space.
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The process, Model II

The string can split at any point: q̄q → q̄q + q̄q.

D8

q
q

Minkowski

q

q

WHAT ARE THE DECAY RATES ?

Space is curved but weakly⇒ compute rate in flat space
(and use effective α′eff that depends on warp factor).

We computed the rate for splitting of a string intersecting or lying on a Dp-brane.

Using tricks in [Polchinski 1988, Polchinski, Cay 1989, Jackson, Jones, Polchinski 2004].
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Decay rate calculations

1st trick: Compactify space.
Model I. Rt × T 2

θ × T p−1
|| × T 8−p

⊥ .

T 2
θ : (ρ, r) ' (ρ+ n1l1 + n2l2 cos θ, r + n2l2 sin θ), n1, n2 ∈ Z .

Dp-brane wrapping T p−1
|| and ρ.

String wrapping r.
r

θ

ρ

Model II. Rt ×X × T p−1
|| × T 9−p

⊥ X has length L.

2nd trick: r and X “temperature” directions⇒ ground states are scalars.
Very massive strings⇒ difference w.r.t. usual GSO projection irrelevant.

3rd trick: Optical theorem, total decay rate from disk correlator:

A = 〈V(0,0)(pL, pR)V−1,−1(p′L, p
′
R)〉.
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Decay rate calculations
Vertex operators: V(−1,−1) =

κ

2π
√
V

: e−φ−φ̃+ipL·X+ipR·X̃ :

V(0,0) =
κ

2π
√
V

α′

2
(ψ · pL)(ψ̃ · pR) : eipL·X+ipR·X̃ :

Volumes: Model I: V = sin θl1l2V⊥V|| Model II: V = LV⊥V||

L,R momenta: p2
L,R = 2

α′ pL,R = p± ~L
2πα′

Model I: ~L = (0, l2 cos θ, l2 sin θ, 0, . . .) Model II: ~L = (0, L, 0, . . .)

String momenta: Model I: p = m√
1−v2

(1, 0, 0, ~v,~0) m2 = (l2/2πα′)2 − 2/α′

Leading gs order⇒ D-brane does not recoil⇒ |~v| = |~v′|.
Model II: p = m(1, 0,~0,~0) m2 = (L/2πα′)2 − 2/α′

Use: 〈Xµ(z)Xν(z′)〉 = −α
′

2
ηµν log(z − z′)

〈Xµ(z)X̃ν(z̄′)〉 = −α
′

2
Gµν log(z − z̄′)

...

Model I: Gµν = diag(−1t, 1ρ,−1r, I||,−I⊥) Model II: Gµν = diag(−1t, 1X , I||,−I⊥)
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Decay rate calculations
Invariants: α′

2
pL ·G · pR =

α′

2
p′L ·G · p′R ≡ −σ

α′

2
pL ·G · p′R =

α′

2
p′L ·G · pR ≡ σ −

α′t
4

α′

2
pL · p′L =

α′

2
pR · p′R = −1− α′t

4

Long string: l2, L�
√
α′ ⇒ Large σ

Model I: σ ' α′(l2/2πα′)2 cos2 θ (unless θ = π/2) Model II: σ ' −1 + α′(L/2πα′)2

Amplitudes involve (small t is a regulator) [z = i, z′ = ix]:

Z 1

0
dx (1− x)−1−α′t/2(1 + x)1+2σ−α′t/2x−1−σ ∼ 22σ Γ(−α′t/4)Γ(−σ)

Γ(−α′t/4− σ)

Regge limit: M' ND2
κ2πσ

(2π)2V

Model I: ND2 = 2π2l1V||/(2π)p(α′)(p+1)/2gs Model II: ND2 = 2π2LV||/(2π)p(α′)(p+1)/2gs

Use optical theorem: Γ = 1
m

ImM = 1
m

gsl2
32π2 × cos2 θ

sin θα′3/2
× (2π

√
α′)8−p
V⊥
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Model I: ND2 = 2π2l1V||/(2π)p(α′)(p+1)/2gs Model II: ND2 = 2π2LV||/(2π)p(α′)(p+1)/2gs

Use optical theorem: Γ = 1
m

ImM = 1
m

gsl2
32π2 × cos2 θ

sin θα′3/2
× (2π

√
α′)8−p
V⊥
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Decay rate calculations

For long strings obtain:

ΓI =
gs

16π
√
α′
· (2π

√
α′)(8−p)

V⊥
· cos2 θ

sin θ

ΓII =
gs

32π2α′
· (2π

√
α′)(9−p)

V⊥
· L

Comments:

Distance between string and brane must be of order α′: suppression from
transversal torus.

For Model I:

Probability of breaking increases as the string is more parallel to the brane,
since the tension creates a bigger transversal force.

Rate vanishes for θ → π/2: no transversal force. Symmetry θ ↔ π/2− θ.
For Model II:

Rate proportional to L as expected.
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Decay rate calculations

Note: calculation in Model I strictly speaking not valid for θ = 0, θ = π/2.

If θ → π/2 ⇒ ΓI → 0, expected behavior.

If θ → 0 ⇒ ΓI →∞, absurd: the torus is singular.
But if impose that in the limit the direction of length L sin θ is included among
the transverse directions, V⊥(8−p) = V⊥(9−p)/L sin θ :

ΓI →
gs

32π2α′
· (2π

√
α′)(9−p)

V⊥(9−p)
· L cos2 θ

is an interpolating rate: ΓI → ΓII for θ → 0.
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Preliminaries

Background:

ds2 = (
u

R
)3/2(dxµdx

µ +
4R3

9uh
f(u)dθ2

2) + (
R

u
)3/2 du

2

f(u)
+ R3/2u1/2dΩ2

4

f(u) = (u3 − u3
h)/u3 eΦ = gs

“ u
R

”3/4
.

String/FT dictionary:

uh =
λm0α′

3
, gs =

λ

3πNcm0

√
α′
, R3 =

λα′

3m0
, T =

λm2
0

6π
,

λ = g2
YMNc, m0 : glueball and KK scale, T : string tension. Note: two energy scales.

In both models high spin meson means: J � λ .

Quark mass in Model II: energy of string stretching from uQ to uh:

mQ =
T

m0

∫ uQ/uh

1

dz

[
1− 1

z3

]− 1
2

.
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Meson decay: Model II.

Let us translate ΓII

First factor: gs
α′ → eΦ

α′eff
= λ

Nc

m2
0λ

3/2

35/2π
.

Strings on leading Regge trajectory: L =
√

8J
πT = 2M

πT (M meson mass).

String fluctuations create a broadening in direction transverse to D8.
[Jackson, Jones, Polchinski 2004]: Calculate delocalization from quadratic fluctuations of

corresponding massive world-sheet field: (2π
√
α′)(9−p)

V⊥
= 2π

log1/2(1+ 8πT

9m2
0

)
.

Rate:
ΓII =

λ

Nc

1

6
√

2π3/2

1

log1/2(1 + 8πT
9m2

0
)

√
T

m0
M.

Rate linear in the mass M of the meson.

1/Nc process, increasing with λ.

In “QCD limit" T ∼ m2
0 ∼ ΛQCD it is just ΓII ∼ λM/Nc.
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Meson decay: Model I.

Let us translate ΓI

First factor: gs√
α′
→ eΦ√

α′eff
= gs

α′ (
uq
R )3/4.

Transverse directions: V⊥ = 2πRθ2 · 2πRS4 =
8π2uq

3u
1/2
h

R3/2f1/2(uq).

Need ρ′(u) in order to calculate θ.
Analytic expression only for mQ � T/m0, when string profile approximated
by Wilson line spinning slowly [Paredes, Talavera 2004].

Profile: ρ′(u) ' ρ′W (u) + δρ′(u) δρ′ � 1

ρ′ ≈ (Ruh)3/2

u3
h(x3 − 1)

»
1− x3(x− 1)

y(x3 − 1)

–
x ≡ uq/uh, y ≡ uQ/uh.

For J � λ lower point of the string: u0 ∼ uh(1 + e−
3m0L

2 ).
Since J ∼ L] ⇒ u0 = uh.
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Meson decay: Model I.

Rate:

ΓI =
λm0

16π2Nc

√
x

(x3 − 1)

[
1 +

1

y

(x− 1)(1− 2x3)

(x3 − 1)

]
.

Large mass limit mq � T/m0:

ΓI ∼
λ

16π2Nc

(
T

m0

)5/2
m0

m
5/2
q

[
1− 2

mq

mQ

]
.

In “QCD limit” ΓI ∼ λ
Nc

Λ
7/2
QCD

m
5/2
q

h
1− 2

mq
mQ

i
.

Small mass limit x ≈ xmin(≈ 1.04):

ΓI ∼
λ

36π2Nc

(
T

m0

)2
m0

m2
q

[
1− T

3m0mQ

]
.

In “QCD limit” ΓI ∼ λ
Nc

Λ3
QCD

m2
q

h
1− ΛQCD

mQ

i
.
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Meson decay: Model I.

Comments:

1/Nc process, increasing with λ.

As mq becomes smaller the decay is more probable.

But suppression with mq only power-like (not exponential) ⇒ this is the
leading decay channel in this “dual of QCD” at strong coupling.

The dependence on heavy quark mass goes like [1− m
mQ

] : rate increases
with mQ and goes to a constant for mQ →∞.

The decay is “asymmetric”: one of decay products has much larger spin
than the other.

The rate is almost independent on the spin J (corrections exponentially
suppressed with J itself).

Same result applies to mesons made up of different heavy quarks.
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Physical Picture

In Model I: flux tube has almost constant energy density apart from small
region around the quarks (from shape of the string).

Qm

m q

Q Q

Minkowski

Q Q

q
q

hHorizon u

u

In decay to massive quarks, the tube has enough energy density for pair
production only around the quarks ⇒ can split only at these points.

In Model II: flux tube has constant energy density everywhere.
Decay by pair-production of massless quarks ⇒ every piece of the tube
has enough energy for the process ⇒ rate proportional to the mass
(length) of the meson.
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Physical Picture

In Model I: flux tube has almost constant energy density apart from small
region around the quarks (from shape of the string).
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Final comments

Phenomenology.
For light quarks (→ Model II) rate maybe linear with M “in average”.
For heavy quarks not enough experimental data, but can we trust the
“straight string” picture?

Can evaluate along the same lines meson decay rate in N = 4 + flavors,
with nice physical interpretation.

The high spin glueballs: closed spinning strings at the horizon.
Semi-classical decay: folded strings...
Witten model: Γ ∼ λ

N2
T 5/2

m4
0

( Γ ∼ λ
N2 ΛQCD in “QCD limit”).

1/N2
c process that increases with the coupling. No J dependence.

Large phase space for the decay: can split at any point.
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