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L ∼ R
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+
F 2

(α′)(p−3)/2gs

→ L ∼ R

16πGN(φ)
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gYM(φ)
+ Gij(φ)∂φi ∂φjupon

compactification

String compactifications are typically characterised 
by a moduli space of supersymmetric vacua.

φi(x)

V (φi) ≡ 0

〈φi〉 is undetermined



It is thus important to device 
mechanisms to lift the moduli space

φi

V (φi)



In the last few years we have witnessed an increasing 
activity in the search of ways to stabilise moduli

In general, most of the constructions involve non-trivial 
fluxes for NS-NS and R-R potentials

χ(CY)
24

= ND3 +
1

2κ2
10T3

∫

CY
H3 ∧ F3

fluxes

D6-branesD3-branes

H3, F3 ∈ H3(CY, Z)
W ∼

∫

CY
Ω ∧ (F3 + τH3)

generate the superpotential

fixes the complex structure moduli

[Giddings,Kachru,Polchinski]

[Gukov,Witten]



In fact, this analysis relies on a low-energy 
(gauged) supergravity description

Kähler class moduli can be also stabilised by 

Non-perturbative effects
‣gaugino condensation
‣D-instantons

[KKLT]

quantum corrections

M != Mcomplex ×MKahler

[Berg,Haack,Körs]

The supergravity approach is actually valid in the 
large-volume regime where (higher-order) 

quantum corrections can be neglected



A two-dimensional sigma-model description is actually missing

∫

Σ

(
∂aXI∂aXJGIJ + εab∂aXI∂bX

JBIJ(X)

+FIJK

)

BIJ != const
difficult to solve

(only few known cases)

In the NSR string
no RR couplings
(pure spinors ??)

?
[See Grassi and Billò’s talk for recent progress on RR backgrounds ]



Other approaches to complex-structure and Kähler-class moduli 
stabilisation relies on oblique D-brane fluxes and/or coisotropic branes

[Antoniadis, (Kumar), Maillard]
[Bianchi, Trevigne]

[Kumar, Mukhopadhyay, Ray]
[Font, Ibañez, Marchesano]

A CFT description is in principle available
(at least for Abelian fluxes)

However, no vacuum solutions with stabilised moduli
are known at present



In what follows, I am going to present 
an alternative bona-fide string mechanism

for moduli stabilisation



... it relies on
non-supersymmetric string compactifications, 

where quantum corrections to the moduli 
space are generated perturbatively



Outline

• Scherk-Schwarz 
reductions in Field and 
String Theory

• The one-loop quantum 
potential. The standard 
lore

• The Hagedorn phase 
transition

• A stringy Scherk-Schwarz 
deformation

• The vacuum energy and 
moduli stabilisation

• Conclusions and outlooks



Md+1 →Md ×S 1

+φ(y + 2πR) −ψ(y + 2πR)

φ(y) ψ(y)

φ(y) =
∑

n

φn einy/R ψ(y) =
∑

n

ψn ei(n+ 1

2
)y/R

∆M ∼ 1/R

Scherk-Schwarz Supersymmetry Breaking in Field Theory

In dimensional reductions use internal symmetries to 
affect the Kaluza-Klein excitations of bosons and fermions

Λ ∼ − 1
Rd

[Scherk, Schwarz]



In String Theory Scherk-Schwarz deformations can be 
conveniently described in terms of freely acting orbifolds

S 1/(−1)F δ

X → X + πRspace-time 
fermion index
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The mass of the “would-be” tachyon is α′m2 = −1 +
α′

2

(
R

2α′

)2

[Kiritsis, Kounnas]

Modular invariance introduces the “tachyonic” twisted sector!
[Rohm; Kounnas, Porrati; Ferrara, Kounnas, Porrati, Zwirner]



Γ ∼
∫ ∞

Λ

dτ2

τ11/2
2

∑

{m2}

c(m2)e−4πτ2m2(R)

Schematically ...

divergent in the IR because of tachyons

Perturbation theory breaks-down at small radius,
hence we work in the large R regime

τ1

τ2

1/2

F



Γ ∼
∫

˜

dτ2

τ11/2
2

∑

m,n

∣∣∣∣
θ4
2

η12

∣∣∣∣
2

(−1)m q
α′
4 (m

R + nR
α′ )2

q̄
α′
4 (m

R−
nR
α′ )2

We must compute

However, the large-radius behaviour is not clear.  
To this end it is useful to go to the Lagrangian 
formalism by Poisson resumming over momenta
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After unfolding the fundamental domain

V = − R
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The large radius behaviour is V (R) ∼ 1
R9 as expected from field theory



V ∼ − a

R9
− b
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As expected,

is not finite for any value of R

Indeed, from the Hardy-Ramanujan formula

V (R)

Hagedorn
phase

R =
√

8α′
R

dN ∼ N−11/4eπ
√

8N

and from the asymptotic behaviour of Bessel functions Kn(x) ∼ e−x

√
x

the N-series is convergent only for

R ≥
√

8α′ =: RHagedorn



Finite temperature analogue: R ∼ 1
T

temperature is the (inverse) radius of compact Euclidean time
bosons are periodic while fermions are antiperiodic
supersymmetry is broken
first-order Hagedorn phase-transition if exponential growth of states

In heterotic string the new phase is non-critical d=7 strings
In type II superstrings the new phase is not known

[Antoniadis, Kounnas]
[Atick, Witten]

[Hagedorn]



So far, we have used twists that affect the Kaluza-Klein excitations

String theory, however, can afford more possibilities

(−1)F δ1

XL → XL +
πR

2

XR → XR +
πR

2

(−1)F δ2

XL → XL +
πα′

2R
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2R

(−1)F δ3

XL → XL +
πR

2
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2
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(−1)F δ1

XL → XL +
πR

2

XR → XR +
πR

2

(−1)F δ2

XL → XL +
πα′

2R

XR → XR −
πα′

2R

Clearly,     and     shifts share the same fateδ1 δ2

T-duality

Hence, well defined in the small radius regime V ∼ R9

while, Hagedorn-like phase transition for R ≥
√

α′

8



What about the asymmetric
Scherk-Schwarz deformation?

T-duality invariant
deformation!

(−1)F δ3

Hence, we expect both the small and large radius regimes 
to be consistent

XL → XL +
πR

2
+

πα′

2R

XR → XR +
πR

2
− πα′

2R
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In the twisted sector the (anti-)holomorphic masses read

Level-matching

requires an even number of internal coordinates to be affected

N (X) + N (ψ) − Ñ (X) − Ñ (ψ) +
(

m +
1
2

)
·
(

n +
1
2

)
= 0
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2

· (n + m) +
2d

4
= 0
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No divergence!



The one-loop partition function
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To disentangle the integrals we restrict to a single rep. of each SL(2,Z) orbit

degenerate orbit

ni = 0

non-degenerate orbit

ni != 0

Large-radius behaviour

After Poisson re-summing over momenta

V = − R6

(α′)3

∫

˜

d2τ

τ6

∣∣∣∣
θ4
2

η12

∣∣∣∣
2 ∑

n,!

eiπn·ε exp
{
− πR2

4α′τ2
|2& + 1 + 2nτ |2

}



τ1

τ2

1/2

S

The degenerate orbit
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To disentangle the integrals we restrict to a single rep. of each SL(2,Z) orbit

Small-radius behaviour

After Poisson re-summing over windings
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Asymptotically ...

V (R)
R =

√

α′

R

T-dualR4

R−4



= 0 R =
√

α′at

×
∑

m,n

(−1)(m+n)·ε q
α′
4 p2

L q̄
α′
4 p2

R (−πτ2)
(
−α′m2

R2
+ n2

)
+ . . .

∂V
∂R

= − V10−2d

16(4π2α′)5−d

∫
d2τ

τ6−d
2

∣∣∣∣
θ4
2

η12

∣∣∣∣
2

The quantum potential
has a minimum at 
the self-dual radius

What about intermediate values of R?



the N-series is not uniformly convergent in the IR, hence 
we can’t exchange summation with integration and write 

the result in terms of Bessel functions!

However, no analytic result for finite R, since

∫ ∞
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V (R)

R
R =

√
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Numerically evaluating the integrals ...



A three-dimensional plot ...

R1 R2

R1 = R2 =
√

α′



A tempting thermodynamics description

large-radius/small-radius duality

 vacuum energy finite for any value of R

higher-order derivatives logarithmically divergent

R ∼ T−1

high-temperature/low-temperature duality

 free energy finite for any value of T

second-order phase transition at self-dual temperature

two-dimensional Ising model



What about the stabilisation of the remaining geometric NS-NS moduli?

gij Bij

Extrema are expected to occur at symmetry enhancement points

However, it seems that at the most symmetric point 
the twisted tachyon is actually tachyonic

Is it separated by an energy barrier from other 
metastable non-tachyonic local minima?

It is always possible to remove the unstable direction 
via orbifold/orientifold projections



For instance ...

Use world-sheet parity to project away Bij

Use                 orbifold to cast the metric in a diagonal formZ4 × Z4
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4
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Are we sure there aren’t additional 
(divergent!) contributions to the 

vacuum energy?

Klein-bottle, annulus and Möbius amplitudes are identically vanishing
since the states with opposite GSO aren’t left-right symmetric

[Sagnotti]

The orbit generated by

(−1)F
δ3

g ∈ Z4 × Z4

is missing

Additional amplitudes are identically vanishing 
(each preserves some supersymmetries)



Conclusions and Outlooks

• I have presented a simple 
example where a full-fledged 
string calculation of the 
quantum potential leads to 
moduli stabilisation

• This scenario universally 
applies to IIA/IIB, heterotic 
strings and orientifolds

• By construction, the quantum 
potential only depends on the 
NS-NS moduli

• Is it possible to up-lift the 
potential à la KKLT and 
obtain de Sitter vacua from 
String Theory?

• Add D-branes (and O-planes) 
with MSSM-like spectra.

• Stability versus higher-loop 
corrections?


