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AdS/CFT correspondence

At N →∞:

(N = 4 SYM)M1,3 ⇔ (string theory)AdS5×S5

Identification of symmetry groups → “AdS/CFT dictionary” – the
correspondence between operators of SYM and states of ST, e.g.
Dilatations correspond to time shifts
For N <∞ the string interactions are included with rate ∼ N−1.

gs ∼ J2/N, J − classical dimension/length

SYM: N →∞ — invariance of single trace operators. Single trace
operators do not mix with multi-trace ones under renormalization.
Integrability (See the talk of K.Zarembo)
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AdS/CFT correspondence

“AdS/CFT dictionary”

AdS5 × S5 strings N = 4 SYM

states Composite operators
AdS symmetry Conformal symmetry
Spherical symmetry R-symmetry
Time shift Dilatation, RG-flow
Hamiltonian, H Dilatation operator, Mixing matrix, ∆
. . . . . .
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SYM dilatation operator

“Alphabet”: {WA} = {Fµν , φ, ψ,∇F ,∇φ,∇ψ . . . }
“Language”: gauge invariant combinations of letters
“Words”: simplest gauge invariants, one-trace composite
operators,

OA1A2...AL
= trWA1WA2 . . .WAL

“Phrases”:
OA1A2...AL1

OB1B2...BL2
. . .OC1C2...CLr

Operator mixing: as N →∞ the trace structure becomes invariant
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Matrix model

The SYM dilatation operator can be perturbatively expanded

∆ =
∑
k

H2k , H2k ∼ g2k
YM

H2k can be written in a compact form in terms of fields and
derivatives. For first few k it was obtained by [Staudacher–Beisert].
One-loop “Hamiltonian”

H2 =
∑

j

h(j)(Pj)
CD
AB : [W A, W̌C ][W B , W̌D ] :,

where h(j) =
∑j

k=1 1/k are harmonic numbers and Pj are the
projectors of the product of two “singleton” representations
WA ⊗WB to irrep with spin j .
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Perturbative expansion
Matrix model

SU(2) sector

Generated by two complex scalars: Φ1 = φ1 + iφ2 and
Φ2 = φ5 + iφ6

Spin interpretation (Heisenberg XXX1/2 model+chain
interactions):

Φ1 ↔ spin ↑
Φ2 ↔ spin ↓

The one-loop dilatation operator is reduced to

H2 = −
g2
YM

16π2
: tr[Φa,Φb][Φ̌a, Φ̌b] :

where Φ̌a,j
i = ∂

∂Φa,
i
j

Can be interpreted as the Hamiltonian of a matrix QM!
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Perturbative expansion
Matrix model

Action

S(Ψ, Ψ̄,A) =∫
dt

(
tr

i
2
(Ψ̄a∇0Ψ

a −∇0Ψ̄aΨ
a) +

g2
YM

16π2
tr[Ψa,Ψb][Ψ̄a, Ψ̄b]

)
where

∇0Ψ = Ψ̇ + [A,Ψ]
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Conserved Charges
Chemical Potentials
“Perturbation Theory”

Finite Temperature

We can consider a thermodynamical system based on our matrix
mechanics. In particular, the thermal partition function is

Z (β) = tr e−β∆

where H is the Hamiltonian of the system and β = 1/kT .
SYM: partition function formally is the Fourier/Laplace transform
of the anomalous dimension density ρ(λ)

ρ(λ) = 1
2π

∫ ∞

−∞
dτ eiτλZ (iτ)
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Conserved Quantities

There is a number of conserved charges in the model. To obvious
Energy E = H2 and momentum P there are also additional
quadratic charges

“Total length”
L = tr X̄ aXa ≡ H0

“Total Spin”
~S = 1

2 tr X̄ a~σa
bXb

where ~σ = {σ1, σ2, σ3} are Pauli matrices

S ≤ L/2, S = |~S |
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Chemical potentials

Consider partial partition function restricted to subspace with L
and ~S fixed

Z (L, ~S ;β) ≡ eS(L,~S ;β) = tr
L,~S

e−β∆

where tr
L,~S

is restricted to states with total length L and total spin
S .

Z (β) =
∑
L,~S

Z (L, ~S ;β)
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“Grand canonical partition function”

exp{−F(µ,~x ;β)} = tr e−β∆−µL̂−~x ·~̂S

S(L, ~S ;β) = µ
∂F(µ,~x ;β)

∂µ
−~x · ∂F(µ,~x ;β)

∂~x
−F(µ,~x ;β)

∣∣∣∣µ=µ(L,~S ,β)

~x=~x(L,~S ,β)

where µ and ~x are solution to the Legendre equations

L =
∂F
∂µ

, ~S =
∂F
∂~x
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“Perturbation Theory”

For large L and Temperature the statistically the probability is
uniformly distributed among the states inside of a subspace with
fixed L and and ~S , i.e. one can take the expansion

tr e−β∆−µL̂−~x ·~̂S = tr e−µL̂−~x ·Ŝ (1− βH2 + . . . )

Then,
F(µ,~x ;β) = F0(µ,~x ;β)− β〈H2〉0

where F0(µ,~x) is the free energy of the gauged matrix oscillator

F0(µ,~x) = tr e−µL̂−~x ·~S

and 〈·〉0 is the gauged oscillator ev. Polya Pendant expansion
[Spradlin-Volovich]
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Then,
F(µ,~x ;β) = F0(µ,~x ;β)− β〈H2〉0

where F0(µ,~x) is the free energy of the gauged matrix oscillator

F0(µ,~x) = tr e−µL̂−~x ·~S

and 〈·〉0 is the gauged oscillator ev. Polya Pendant expansion
[Spradlin-Volovich]

Corneliu Sochichiu Matrix model description of dilatations in N=4 super Yang-Mills theory



Introduction
SYM dilatation operator

Partition function
Computation
Conclusions

Gauged matrix oscillator
Phase transition
Small chemical potentials
Inclusion of the one-loop contribution

Gauged matrix oscillator

After integration over the matrix fields one is left with integral over
the gauge field A, which can be reduced to the integral over its
N − 1 eigenvalues

Z0(µ,~x) =
2−

1
2N(N+1)eN2µ

[sinh(µ+/2) sinh(µ−/2)]N

∫ ∏
n

dθn×

∏
m>n

1− cos θmn

(coshµ+ − cos θmn)(coshµ− − cos θmn)

where µ± = µ± x/2 and θmn = θm − θn.
Saddle point. One should find static distributions of {θn}. . .
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We should find the minimum of the function

F (θ;µ,~x) = −N2µ+ N[ln sinh(µ+/2) + ln sinh(µ−/2)]

+ 1
2

∑
m,n
n 6=m

(− ln(1− cos θmn)+

ln(coshµ+ − cos θmn) + ln(coshµ− − cos θmn)) ,

Function F (θ;µ,~x) can be expanded in powers ‘e−µ± ’ as

F (θ;µ,~x) = N[ln sinh(µ+/2) + ln sinh(µ−/2)− µ]

+
∞∑

ω=1

1

ω
(1− e−ωµ+ − e−ωµ−)

∑
m,n
m 6=n

cos(ωθmn).

These are not all the cancelations. . .
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The free energy takes the form

F (θ;µ,~x) =
∞∑

ω=1

1

ω

(
1− 2e−ωµ cosh

(ωx

2

))
|ρ̃ω|2

where

ρ̃ω =
∑
n

eiωθn =

∮
dθ ρ(θ)eiωθ

where ρ(θ) is the eigenvalue distribution.Since,

ρ(θ) ≥ 0,

∮
dθ ρ(θ) = N,

ρ̃ω are not free fields!
However...
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Phase transition

When, (
1− 2e−ωµ cosh

(ωx

2

))
= 0,

there is an apparent zero mode ⇒ singularity in the Free energy?

Singularity = Phase transition

Evaluation by Polya Enumeration Theorem (x = 0): Phase
transition at µc = ln 2!
Another interesting feature: Contribution ∼ O(N2) and ∼ O(N)
canceled! The leading contribution is at most finite as N →∞!
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Small chemical potential µ

When µ is large the repulsion dominates and one expects an
eigenvalue-θ distribution which is almost uniform.

The scale of interaction is `int ∼
√
µ+µ− and when `int . 2π

the eigenvalues can condense in a compact region of this size.

For small µ± the expansion in powers of e−µ± is far from
optimal...

We can try an alternative approach. . .

Corneliu Sochichiu Matrix model description of dilatations in N=4 super Yang-Mills theory



Introduction
SYM dilatation operator

Partition function
Computation
Conclusions

Gauged matrix oscillator
Phase transition
Small chemical potentials
Inclusion of the one-loop contribution

Small chemical potential µ

When µ is large the repulsion dominates and one expects an
eigenvalue-θ distribution which is almost uniform.

The scale of interaction is `int ∼
√
µ+µ− and when `int . 2π

the eigenvalues can condense in a compact region of this size.

For small µ± the expansion in powers of e−µ± is far from
optimal...

We can try an alternative approach. . .

Corneliu Sochichiu Matrix model description of dilatations in N=4 super Yang-Mills theory



Introduction
SYM dilatation operator

Partition function
Computation
Conclusions

Gauged matrix oscillator
Phase transition
Small chemical potentials
Inclusion of the one-loop contribution

Small chemical potential µ

When µ is large the repulsion dominates and one expects an
eigenvalue-θ distribution which is almost uniform.

The scale of interaction is `int ∼
√
µ+µ− and when `int . 2π

the eigenvalues can condense in a compact region of this size.

For small µ± the expansion in powers of e−µ± is far from
optimal...

We can try an alternative approach. . .

Corneliu Sochichiu Matrix model description of dilatations in N=4 super Yang-Mills theory



Introduction
SYM dilatation operator

Partition function
Computation
Conclusions

Gauged matrix oscillator
Phase transition
Small chemical potentials
Inclusion of the one-loop contribution

Small chemical potential µ

When µ is large the repulsion dominates and one expects an
eigenvalue-θ distribution which is almost uniform.

The scale of interaction is `int ∼
√
µ+µ− and when `int . 2π

the eigenvalues can condense in a compact region of this size.

For small µ± the expansion in powers of e−µ± is far from
optimal...

We can try an alternative approach. . .

Corneliu Sochichiu Matrix model description of dilatations in N=4 super Yang-Mills theory



Introduction
SYM dilatation operator

Partition function
Computation
Conclusions

Gauged matrix oscillator
Phase transition
Small chemical potentials
Inclusion of the one-loop contribution

Incompressible liquid approximation

Consider situation when
√
µ+µ− � 2π and assume that the

eigenvalues θn condensed in some region of size Λ. Approximate
the density inside the condensate to be constant.(In fact, the
constant mode is only expected to contribute to the
thermodynamical functions.)
The zero pressure condition at the center of the condensate gives
Λ = 2

√
µ+µ−.

Evaluation of the effective action (Entropy) yields,

Seff(L,S) = 4N2

√L+

L−
ln

∣∣∣∣∣∣
1 +

√
L−
L+

1−
√

L−
L+

∣∣∣∣∣∣+
√

L−
L+

ln

∣∣∣∣∣∣
1 +

√
L+

L−

1−
√

L+

L−

∣∣∣∣∣∣


Of order N2! The model behaves as a system of N2 particles —
STRING BITS!
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Inclusion of H2

Knowing the eigenvalue distribution we can compute the ev 〈H2〉0
for each case.

In the analytic region all contribution down to order N0

cancels leaving with at most regular contribution for N →∞.
In the region of small µ±, plugging the found eigenvalue
distribution yields

〈H2〉0 = N2 βλ

2(2π)2
F

(√
L−
L+

)
where

F (ξ) =

∫ 1

−1
dλ
{
− ln

∣∣∣∣λ2 − (1− ξ)2

λ2 − (1 + ξ)2

∣∣∣∣ ln ∣∣∣∣λ2 − (1 + ξ−1)2

λ2 − (1− ξ−1)2

∣∣∣∣
+ 1

4 ln

∣∣∣∣−ξ2 + (λ+ 1)2

−ξ2 + (λ− 1)2

∣∣∣∣ ln ∣∣∣∣−ξ−2 + (λ+ 1)2

−ξ−2 + (λ− 1)2

∣∣∣∣}
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We considered a (thermo)dynamical system corresponding to
RG flow in N = 4 SYM

For large L we consider the one-loop contribution to the
dilatation operator as a perturbation to the classical one
described by the gauged matrix oscillator

We find signals of phase transition; compatibility with PET
computation

Path integral approach is more universal

Back reaction not computed

More loose ends. . .

Thank you!
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