Matrix model description of dilatations in $\mathrm{N}=4$ super Yang-Mills theory

Corneliu Sochichiu

Max-Planck-Institut, München
and
Laboratori Nazionali di Frascati
talk based on hep-th/0608028

October 9, 2006

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"
(4) Computation
- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"
(4) Computation
- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"
- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"

4) Computation

- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"

4) Computation

- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution
(5) Conclusions

Outline

(1) Introduction

- AdS/CFT correspondence
(2) SYM dilatation operator
- Perturbative expansion
- Matrix model
(3) Partition function
- Conserved Charges
- Chemical Potentials
- "Perturbation Theory"

4) Computation

- Gauged matrix oscillator
- Phase transition
- Small chemical potentials
- Inclusion of the one-loop contribution
(5) Conclusions

AdS/CFT correspondence

At $N \rightarrow \infty$:

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups \rightarrow "AdS/CFT dictionary" - the correspondence between operators of SYM and states of ST, e.g. Dilatations correspond to time shifts For $N<\infty$ the string interactions are included with rate $\sim N^{-1}$. $g_{s} \sim J^{2} / N, \quad J$-classical dimension/length

SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace operators do not mix with multi-trace ones under renormalization. Integrability (See the talk of K.Zarembo)

AdS/CFT correspondence

At $N \rightarrow \infty$:

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups \rightarrow "AdS/CFT dictionary" - the correspondence between operators of SYM and states of ST, e.g. Dilatations correspond to time shifts
For $N<\infty$ the string interactions are included with rate $\sim N^{-1}$ $g_{s} \sim J^{2} / N, \quad J$-classical dimension/length

SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace operators do not mix with multi-trace ones under renormalization Integrability (See the talk of K.Zarembo)

AdS/CFT correspondence

At $N \rightarrow \infty$:

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups \rightarrow "AdS/CFT dictionary" - the correspondence between operators of SYM and states of ST, e.g. Dilatations correspond to time shifts
For $N<\infty$ the string interactions are included with rate $\sim N^{-1}$.
$g_{s} \sim J^{2} / N, \quad J$-classical dimension/length
SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace
operators do not mix with multi-trace ones under renormalization Integrability (See the talk of K.Zarembo)

AdS/CFT correspondence

At $N \rightarrow \infty$:

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups \rightarrow "AdS/CFT dictionary" - the correspondence between operators of SYM and states of ST, e.g. Dilatations correspond to time shifts
For $N<\infty$ the string interactions are included with rate $\sim N^{-1}$.

$$
g_{s} \sim J^{2} / N, \quad J \text { - classical dimension/length }
$$

SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace
operators do not mix with multi-trace ones under renormalization
Integrability (See the talk of K.Zarembo)

AdS/CFT correspondence

At $N \rightarrow \infty$:

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\operatorname{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups \rightarrow "AdS/CFT dictionary" - the correspondence between operators of SYM and states of ST, e.g. Dilatations correspond to time shifts
For $N<\infty$ the string interactions are included with rate $\sim N^{-1}$.

$$
g_{s} \sim J^{2} / N, \quad J-\text { classical dimension/length }
$$

SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace operators do not mix with multi-trace ones under renormalization. Integrability (See the talk of K.Zarembo)

"AdS/CFT dictionary"

AdS $_{5} \times S^{5}$ strings	$\mathcal{N}=4$ SYM
states	Composite operators
AdS symmetry	Conformal symmetry
Spherical symmetry	R-symmetry
Time shift	Dilatation, RG-flow
Hamiltonian, H	Dilatation operator, Mixing matrix, Δ

SYM dilatation operator

"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters
"Words": simplest gauge invariants, one-trace composite
operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases"

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant

SYM dilatation operator

"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters
"Words": simplest gauge invariants, one-trace composite

operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases"

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant

SYM dilatation operator

"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters "Words": simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases"

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant

SYM dilatation operator

"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters
"Words": simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant

SYM dilatation operator

"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters
"Words": simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases":

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant

The SYM dilatation operator can be perturbatively expanded

$$
\Delta=\sum_{k} H_{2 k}, \quad H_{2 k} \sim g_{\mathrm{YM}}^{2 k}
$$

$H_{2 k}$ can be written in a compact form in terms of fields and derivatives. For first few k it was obtained by [Staudacher-Beisert] One-loop "Hamiltonian"

where $h(j)=\sum_{k=1}^{j} 1 / k$ are harmonic numbers and P_{j} are the projectors of the product of two "singleton" representations $W_{A} \otimes W_{B}$ to irrep with spin j.

The SYM dilatation operator can be perturbatively expanded

$$
\Delta=\sum_{k} H_{2 k}, \quad H_{2 k} \sim g_{\mathrm{YM}}^{2 k}
$$

$H_{2 k}$ can be written in a compact form in terms of fields and derivatives. For first few k it was obtained by [Staudacher-Beisert]. One-loop "Hamiltonian'

where $h(j)=\sum_{k=1}^{j} 1 / k$ are harmonic numbers and P_{j} are the projectors of the product of two "singleton" representations $W_{A} \otimes W_{B}$ to irrep with spin j

The SYM dilatation operator can be perturbatively expanded

$$
\Delta=\sum_{k} H_{2 k}, \quad H_{2 k} \sim g_{\mathrm{YM}}^{2 k}
$$

$H_{2 k}$ can be written in a compact form in terms of fields and derivatives. For first few k it was obtained by [Staudacher-Beisert]. One-loop "Hamiltonian"

$$
H_{2}=\sum_{j} h(j)\left(P_{j}\right)_{A B}^{C D}:\left[W^{A}, \check{W}_{C}\right]\left[W^{B}, \check{W}_{D}\right]:
$$

where $h(j)=\sum_{k=1}^{j} 1 / k$ are harmonic numbers and P_{j} are the projectors of the product of two "singleton" representations $W_{A} \otimes W_{B}$ to irrep with spin j

The SYM dilatation operator can be perturbatively expanded

$$
\Delta=\sum_{k} H_{2 k}, \quad H_{2 k} \sim g_{\mathrm{YM}}^{2 k}
$$

$H_{2 k}$ can be written in a compact form in terms of fields and derivatives. For first few k it was obtained by [Staudacher-Beisert]. One-loop "Hamiltonian"

$$
H_{2}=\sum_{j} h(j)\left(P_{j}\right)_{A B}^{C D}:\left[W^{A}, \check{W}_{C}\right]\left[W^{B}, \check{W}_{D}\right]:
$$

where $h(j)=\sum_{k=1}^{j} 1 / k$ are harmonic numbers and P_{j} are the projectors of the product of two "singleton" representations $W_{A} \otimes W_{B}$ to irrep with spin j.

SU(2) sector

Generated by two complex scalars: $\Phi_{1}=\phi_{1}+\mathrm{i} \phi_{2}$ and $\phi_{2}=\phi_{5}+\mathrm{i} \phi_{6}$
Spin interpretation (Heisenberg $\mathrm{XXX} \mathrm{X}_{1 / 2}$ model+chain interactions):

The one-loop dilatation operator is reduced to

where $\check{\Phi}_{a, j}{ }^{i}=\frac{\partial}{\partial \Phi^{a, i_{i}}}$
Can be interpreted as the Hamiltonian of a matrix QM!

Corneliu Sochichiu

SU(2) sector

Generated by two complex scalars: $\Phi_{1}=\phi_{1}+\mathrm{i} \phi_{2}$ and $\phi_{2}=\phi_{5}+\mathrm{i} \phi_{6}$
Spin interpretation (Heisenberg $X X X_{1 / 2}$ model+chain interactions):

$$
\begin{array}{lll}
\Phi_{1} & \leftrightarrow & \text { spin } \uparrow \\
\Phi_{2} & \leftrightarrow & \text { spin } \downarrow
\end{array}
$$

The one-loop dilatation operator is reduced to

where $\check{\Phi}_{a, j}{ }^{i}=\frac{\partial}{\partial \Phi^{a, i}, j}$
Can be interpreted as the Hamiltonian of a matrix QM!

SU(2) sector

Generated by two complex scalars: $\Phi_{1}=\phi_{1}+\mathrm{i} \phi_{2}$ and $\phi_{2}=\phi_{5}+\mathrm{i} \phi_{6}$
Spin interpretation (Heisenberg $X X X_{1 / 2}$ model+chain interactions):

$$
\begin{array}{lll}
\Phi_{1} & \leftrightarrow & \text { spin } \uparrow \\
\Phi_{2} & \leftrightarrow & \text { spin } \downarrow
\end{array}
$$

The one-loop dilatation operator is reduced to

$$
H_{2}=-\frac{g_{\mathrm{YM}}^{2}}{16 \pi^{2}}: \operatorname{tr}\left[\Phi^{a}, \Phi^{b}\right]\left[\check{\Phi}_{a}, \check{\Phi}_{b}\right]:
$$

where $\check{\Phi}_{a, j}^{i}=\frac{\partial}{\partial \Phi^{a, j}}$
Can be interpreted as the Hamiltonian of a matrix QM!

SU(2) sector

Generated by two complex scalars: $\Phi_{1}=\phi_{1}+\mathrm{i} \phi_{2}$ and $\phi_{2}=\phi_{5}+\mathrm{i} \phi_{6}$
Spin interpretation (Heisenberg $X X X_{1 / 2}$ model+chain interactions):

$$
\begin{array}{lll}
\Phi_{1} & \leftrightarrow & \operatorname{spin} \uparrow \\
\Phi_{2} & \leftrightarrow & \text { spin } \downarrow
\end{array}
$$

The one-loop dilatation operator is reduced to

$$
H_{2}=-\frac{g_{\mathrm{YM}}^{2}}{16 \pi^{2}}: \operatorname{tr}\left[\Phi^{a}, \Phi^{b}\right]\left[\check{\Phi}_{a}, \check{\Phi}_{b}\right]:
$$

where $\check{\Phi}_{a, j}{ }^{i}=\frac{\partial}{\partial \Phi^{2, j} j^{j}}$
Can be interpreted as the Hamiltonian of a matrix QM!

Action

$$
\begin{aligned}
& S(\Psi, \bar{\Psi}, A)= \\
& \int \mathrm{d} t\left(\operatorname{tr} \frac{\mathrm{i}}{2}\left(\bar{\Psi}_{a} \nabla_{0} \Psi^{a}-\nabla_{0} \bar{\Psi}_{a} \Psi^{a}\right)+\frac{g_{\mathrm{YM}}^{2}}{16 \pi^{2}} \operatorname{tr}\left[\Psi^{a}, \Psi^{b}\right]\left[\bar{\Psi}_{a}, \bar{\Psi}_{b}\right]\right)
\end{aligned}
$$

Action

$$
\begin{aligned}
& S(\Psi, \bar{\Psi}, A)= \\
& \int \mathrm{d} t\left(\operatorname{tr} \frac{\mathrm{i}}{2}\left(\bar{\Psi}_{a} \nabla_{0} \Psi^{a}-\nabla_{0} \bar{\Psi}_{a} \Psi^{a}\right)+\frac{g_{\mathrm{YM}}^{2}}{16 \pi^{2}} \operatorname{tr}\left[\Psi^{a}, \Psi^{b}\right]\left[\bar{\Psi}_{a}, \bar{\Psi}_{b}\right]\right)
\end{aligned}
$$

where

$$
\nabla_{0} \Psi=\dot{\psi}+[A, \Psi]
$$

Finite Temperature

We can consider a thermodynamical system based on our matrix mechanics. In particular, the thermal partition function is

$$
Z(\beta)=\operatorname{tr} \mathrm{e}^{-\beta \Delta}
$$

where H is the Hamiltonian of the system and $\beta=1 / k T$. SYM: partition function formally is the Fourier/Laplace transform of the anomalous dimension density $\rho(\lambda)$

Finite Temperature

We can consider a thermodynamical system based on our matrix mechanics. In particular, the thermal partition function is

$$
Z(\beta)=\operatorname{tr} \mathrm{e}^{-\beta \Delta}
$$

where H is the Hamiltonian of the system and $\beta=1 / k T$.
SYM: partition function formally is the Fourier/Laplace transform of the anomalous dimension density $\rho(\lambda)$

Finite Temperature

We can consider a thermodynamical system based on our matrix mechanics. In particular, the thermal partition function is

$$
Z(\beta)=\operatorname{tr} \mathrm{e}^{-\beta \Delta}
$$

where H is the Hamiltonian of the system and $\beta=1 / k T$. SYM: partition function formally is the Fourier/Laplace transform of the anomalous dimension density $\rho(\lambda)$

$$
\rho(\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \tau \lambda} Z(\mathrm{i} \tau)
$$

Conserved Quantities

There is a number of conserved charges in the model. To obvious Energy $E=H_{2}$ and momentum P there are also additional quadratic charges

- "Total Spin"

$$
L=\operatorname{tr} \bar{X}^{a} X_{a} \equiv H_{0}
$$

where $\vec{\sigma}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are Pauli matrices

Conserved Quantities

There is a number of conserved charges in the model. To obvious Energy $E=H_{2}$ and momentum P there are also additional quadratic charges

- "Total length"

$$
L=\operatorname{tr} \bar{X}^{a} X_{a} \equiv H_{0}
$$

- "Total Spin"

$$
\vec{S}=\frac{1}{2} \operatorname{tr} \bar{X}^{a} \vec{\sigma}_{a}^{b} X_{b}
$$

where $\vec{\sigma}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are Pauli matrices

Conserved Quantities

There is a number of conserved charges in the model. To obvious Energy $E=H_{2}$ and momentum P there are also additional quadratic charges

- "Total length"

$$
L=\operatorname{tr} \bar{X}^{a} X_{a} \equiv H_{0}
$$

- "Total Spin"

$$
\vec{S}=\frac{1}{2} \operatorname{tr} \bar{X}^{a} \vec{\sigma}_{a}^{b} X_{b}
$$

where $\vec{\sigma}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are Pauli matrices

Conserved Quantities

There is a number of conserved charges in the model. To obvious Energy $E=H_{2}$ and momentum P there are also additional quadratic charges

- "Total length"

$$
L=\operatorname{tr} \bar{X}^{a} X_{a} \equiv H_{0}
$$

- "Total Spin"

$$
\vec{S}=\frac{1}{2} \operatorname{tr} \bar{X}^{a} \vec{\sigma}_{a}^{b} X_{b}
$$

where $\vec{\sigma}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are Pauli matrices

Conserved Quantities

There is a number of conserved charges in the model. To obvious Energy $E=H_{2}$ and momentum P there are also additional quadratic charges

- "Total length"

$$
L=\operatorname{tr} \bar{X}^{a} X_{a} \equiv H_{0}
$$

- "Total Spin"

$$
\vec{S}=\frac{1}{2} \operatorname{tr} \bar{X}^{a} \vec{\sigma}_{a}^{b} X_{b}
$$

where $\vec{\sigma}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are Pauli matrices

$$
S \leq L / 2, \quad S=|\vec{S}|
$$

Chemical potentials

Consider partial partition function restricted to subspace with L and \vec{S} fixed
where $\operatorname{tr}_{L, \vec{S}}$ is restricted to states with total length L and total spin

Chemical potentials

Consider partial partition function restricted to subspace with L and \vec{S} fixed

$$
Z(L, \vec{S} ; \beta) \equiv \mathrm{e}^{\mathcal{S}(L, \vec{S} ; \beta)}=\operatorname{tr}_{L, \vec{S}} \mathrm{e}^{-\beta \Delta}
$$

where $\operatorname{tr}_{L, \vec{S}}$ is restricted to states with total length L and total spin

Chemical potentials

Consider partial partition function restricted to subspace with L and \vec{S} fixed

$$
Z(L, \vec{S} ; \beta) \equiv \mathrm{e}^{\mathcal{S}(L, \vec{S} ; \beta)}=\operatorname{tr}_{L, \vec{S}} \mathrm{e}^{-\beta \Delta}
$$

where $\operatorname{tr}_{L, \vec{S}}$ is restricted to states with total length L and total spin S.

Chemical potentials

Consider partial partition function restricted to subspace with L and \vec{S} fixed

$$
Z(L, \vec{S} ; \beta) \equiv \mathrm{e}^{\mathcal{S}(L, \vec{S} ; \beta)}=\operatorname{tr}_{L, \vec{S}} \mathrm{e}^{-\beta \Delta}
$$

where $\operatorname{tr}_{L, \vec{S}}$ is restricted to states with total length L and total spin S.

$$
Z(\beta)=\sum_{L, \vec{S}} Z(L, \vec{S} ; \beta)
$$

"Grand canonical partition function"

"Grand canonical partition function"

$$
\exp \{-\mathcal{F}(\mu, \vec{x} ; \beta)\}=\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{\vec{S}}}
$$

where μ and \vec{x} are solution to the Legendre equations

"Grand canonical partition function"

$$
\exp \{-\mathcal{F}(\mu, \vec{x} ; \beta)\}=\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{\vec{S}}}
$$

$\mathcal{S}(L, \vec{S} ; \beta)=\mu \frac{\partial \mathcal{F}(\mu, \vec{x} ; \beta)}{\partial \mu}-\vec{x} \cdot \frac{\partial \mathcal{F}(\mu, \vec{x} ; \beta)}{\partial \vec{x}}-\left.\mathcal{F}(\mu, \vec{x} ; \beta)\right|_{\substack{\mu=\mu(L, \vec{S}, \beta) \\ \vec{x}=\vec{x}(L, \vec{S}, \beta)}}$
where μ and \vec{x} are solution to the Legendre equations

"Grand canonical partition function"

$$
\exp \{-\mathcal{F}(\mu, \vec{x} ; \beta)\}=\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{S}}
$$

$$
\mathcal{S}(L, \vec{S} ; \beta)=\mu \frac{\partial \mathcal{F}(\mu, \vec{x} ; \beta)}{\partial \mu}-\vec{x} \cdot \frac{\partial \mathcal{F}(\mu, \vec{x} ; \beta)}{\partial \vec{x}}-\left.\mathcal{F}(\mu, \vec{x} ; \beta)\right|_{\substack{\mu=\mu(L, \vec{S}, \beta) \\ \vec{x}=\vec{x}(L, \vec{S}, \beta)}}
$$

where μ and \vec{x} are solution to the Legendre equations

$$
L=\frac{\partial \mathcal{F}}{\partial \mu}, \quad \vec{S}=\frac{\partial \mathcal{F}}{\partial \vec{x}}
$$

"Perturbation Theory"

For large L and Temperature the statistically the probability is uniformly distributed among the states inside of a subspace with fixed L and and \vec{S}, i.e. one can take the expansion

$$
\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{S}}=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \hat{S}}\left(1-\beta H_{2}+\ldots\right)
$$

Then,

$$
\mathcal{F}(\mu, \vec{x} ; \beta)=\mathcal{F}_{0}(\mu, \vec{x} ; \beta)-\beta\left\langle H_{2}\right\rangle_{0}
$$

where $\mathcal{F}_{0}(\mu, \vec{x})$ is the free energy of the gauged matrix oscillator

and $\langle\cdot\rangle_{0}$ is the gauged oscillator ev. Polya Pendant expansion

"Perturbation Theory"

For large L and Temperature the statistically the probability is uniformly distributed among the states inside of a subspace with fixed L and and \vec{S}, i.e. one can take the expansion

$$
\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{S}}=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \hat{S}}\left(1-\beta H_{2}+\ldots\right)
$$

Then,

$$
\mathcal{F}(\mu, \vec{x} ; \beta)=\mathcal{F}_{0}(\mu, \vec{x} ; \beta)-\beta\left\langle H_{2}\right\rangle_{0}
$$

where $\mathcal{F}_{0}(\mu, \vec{x})$ is the free energy of the gauged matrix oscillator

"Perturbation Theory"

For large L and Temperature the statistically the probability is uniformly distributed among the states inside of a subspace with fixed L and and \vec{S}, i.e. one can take the expansion

$$
\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{S}}=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \hat{S}}\left(1-\beta H_{2}+\ldots\right)
$$

Then,

$$
\mathcal{F}(\mu, \vec{x} ; \beta)=\mathcal{F}_{0}(\mu, \vec{x} ; \beta)-\beta\left\langle H_{2}\right\rangle_{0}
$$

where $\mathcal{F}_{0}(\mu, \vec{x})$ is the free energy of the gauged matrix oscillator

$$
\mathcal{F}_{0}(\mu, \vec{x})=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \vec{S}}
$$

and $\langle\cdot\rangle_{0}$ is the gauged oscillator ev. Polya Pendant expansion

"Perturbation Theory"

For large L and Temperature the statistically the probability is uniformly distributed among the states inside of a subspace with fixed L and and \vec{S}, i.e. one can take the expansion

$$
\operatorname{tr} \mathrm{e}^{-\beta \Delta-\mu \hat{L}-\vec{x} \cdot \hat{S}}=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \hat{S}}\left(1-\beta H_{2}+\ldots\right)
$$

Then,

$$
\mathcal{F}(\mu, \vec{x} ; \beta)=\mathcal{F}_{0}(\mu, \vec{x} ; \beta)-\beta\left\langle H_{2}\right\rangle_{0}
$$

where $\mathcal{F}_{0}(\mu, \vec{x})$ is the free energy of the gauged matrix oscillator

$$
\mathcal{F}_{0}(\mu, \vec{x})=\operatorname{tr} \mathrm{e}^{-\mu \hat{L}-\vec{x} \cdot \vec{S}}
$$

and $\langle\cdot\rangle_{0}$ is the gauged oscillator ev. Polya Pendant expansion [Spradlin-Volovich]

Gauged matrix oscillator

After integration over the matrix fields one is left with integral over the gauge field A, which can be reduced to the integral over its N - 1 eigenvalues

where $\mu_{ \pm}=\mu \pm x / 2$ and $\theta_{m n}=\theta_{m}-\theta_{n}$.
Saddle point. One should find static distributions of $\left\{\theta_{n}\right\}$

Gauged matrix oscillator

After integration over the matrix fields one is left with integral over the gauge field A, which can be reduced to the integral over its N - 1 eigenvalues

$$
\begin{aligned}
Z_{0}(\mu, \vec{x})= & \frac{2^{-\frac{1}{2} N(N+1)} \mathrm{e}^{N^{2} \mu}}{\left[\sinh \left(\mu_{+} / 2\right) \sinh \left(\mu_{-} / 2\right)\right]^{N}} \int \prod_{n} \mathrm{~d} \theta_{n} \times \\
& \prod_{m>n} \frac{1-\cos \theta_{m n}}{\left(\cosh \mu_{+}-\cos \theta_{m n}\right)\left(\cosh \mu_{-}-\cos \theta_{m n}\right)}
\end{aligned}
$$

where $\mu_{ \pm}=\mu \pm x / 2$ and $\theta_{m n}=\theta_{m}-\theta_{n}$.
Saddle point. One should find static distributions of $\left\{\theta_{n}\right\}$

Gauged matrix oscillator

After integration over the matrix fields one is left with integral over the gauge field A, which can be reduced to the integral over its N - 1 eigenvalues

$$
\begin{aligned}
Z_{0}(\mu, \vec{x})= & \frac{2^{-\frac{1}{2} N(N+1)} \mathrm{e}^{N^{2} \mu}}{\left[\sinh \left(\mu_{+} / 2\right) \sinh \left(\mu_{-} / 2\right)\right]^{N}} \int \prod_{n} \mathrm{~d} \theta_{n} \times \\
& \prod_{m>n} \frac{1-\cos \theta_{m n}}{\left(\cosh \mu_{+}-\cos \theta_{m n}\right)\left(\cosh \mu_{-}-\cos \theta_{m n}\right)}
\end{aligned}
$$

where $\mu_{ \pm}=\mu \pm x / 2$ and $\theta_{m n}=\theta_{m}-\theta_{n}$.

Gauged matrix oscillator

After integration over the matrix fields one is left with integral over the gauge field A, which can be reduced to the integral over its N - 1 eigenvalues

$$
\begin{aligned}
Z_{0}(\mu, \vec{x})= & \frac{2^{-\frac{1}{2} N(N+1)} \mathrm{e}^{N^{2} \mu}}{\left[\sinh \left(\mu_{+} / 2\right) \sinh \left(\mu_{-} / 2\right)\right]^{N}} \int \prod_{n} \mathrm{~d} \theta_{n} \times \\
& \prod_{m>n} \frac{1-\cos \theta_{m n}}{\left(\cosh \mu_{+}-\cos \theta_{m n}\right)\left(\cosh \mu_{-}-\cos \theta_{m n}\right)}
\end{aligned}
$$

where $\mu_{ \pm}=\mu \pm x / 2$ and $\theta_{m n}=\theta_{m}-\theta_{n}$.
Saddle point. One should find static distributions of $\left\{\theta_{n}\right\} \ldots$

We should find the minimum of the function

$$
\begin{aligned}
F(\theta ; \mu, \vec{x})=- & N^{2} \mu+N\left[\ln \sinh \left(\mu_{+} / 2\right)+\ln \sinh \left(\mu_{-} / 2\right)\right] \\
& \quad+\frac{1}{2} \sum_{\substack{m, n \\
n \neq m}}\left(-\ln \left(1-\cos \theta_{m n}\right)+\right. \\
& \left.\ln \left(\cosh \mu_{+}-\cos \theta_{m n}\right)+\ln \left(\cosh \mu_{-}-\cos \theta_{m n}\right)\right),
\end{aligned}
$$

Function $F(\theta ; \mu, \vec{x})$ can be expanded in powers ' $\mathrm{e}^{-\mu_{ \pm} \text {' as }}$ $F(\theta ; \mu, \vec{x})=N\left[\ln \sinh \left(\mu_{+} / 2\right)+\operatorname{In} \sinh \left(\mu_{-} / 2\right)-\mu\right]$

We should find the minimum of the function

$$
\begin{aligned}
F(\theta ; \mu, \vec{x})=- & N^{2} \mu+N\left[\ln \sinh \left(\mu_{+} / 2\right)+\ln \sinh \left(\mu_{-} / 2\right)\right] \\
& \quad+\frac{1}{2} \sum_{\substack{m, n \\
n \neq m}}\left(-\ln \left(1-\cos \theta_{m n}\right)+\right. \\
& \left.\ln \left(\cosh \mu_{+}-\cos \theta_{m n}\right)+\ln \left(\cosh \mu_{-}-\cos \theta_{m n}\right)\right)
\end{aligned}
$$

Function $F(\theta ; \mu, \vec{x})$ can be expanded in powers ' $\mathrm{e}^{-\mu_{ \pm} \text {' as }}$

$$
\begin{aligned}
F(\theta ; \mu, \vec{x})=N[& \left.\ln \sinh \left(\mu_{+} / 2\right)+\ln \sinh \left(\mu_{-} / 2\right)-\mu\right] \\
& +\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-\mathrm{e}^{-\omega \mu_{+}}-\mathrm{e}^{-\omega \mu_{-}}\right) \sum_{\substack{m, n \\
m \neq n}} \cos \left(\omega \theta_{m n}\right) .
\end{aligned}
$$

These are not all the cancelations...

The free energy takes the form

$$
F(\theta ; \mu, \vec{x})=\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)\left|\tilde{\rho}_{\omega}\right|^{2}
$$

where

where $\rho(\theta)$ is the eigenvalue distribution. Since,

$$
\rho(\theta) \geq 0
$$

$$
\oint d \theta \rho(\theta)=N
$$

$\tilde{\rho}_{\omega}$ are not free fields!
However..

The free energy takes the form

$$
F(\theta ; \mu, \vec{x})=\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)\left|\tilde{\rho}_{\omega}\right|^{2}
$$

where

$$
\tilde{\rho}_{\omega}=\sum_{n} \mathrm{e}^{\mathrm{i} \omega \theta_{n}}=\oint \mathrm{d} \theta \rho(\theta) \mathrm{e}^{\mathrm{i} \omega \theta}
$$

where $\rho(\theta)$ is the eigenvalue distribution. Since,

$$
\rho(\theta) \geq 0, \quad \oint \mathrm{~d} \theta \rho(\theta)=N,
$$

$\tilde{\rho}_{\omega}$ are not free fields!
However..

The free energy takes the form

$$
F(\theta ; \mu, \vec{x})=\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)\left|\tilde{\rho}_{\omega}\right|^{2}
$$

where

$$
\tilde{\rho}_{\omega}=\sum_{n} \mathrm{e}^{\mathrm{i} \omega \theta_{n}}=\oint \mathrm{d} \theta \rho(\theta) \mathrm{e}^{\mathrm{i} \omega \theta}
$$

where $\rho(\theta)$ is the eigenvalue distribution.

$\tilde{\rho}_{\omega}$ are not free fields!
However..

The free energy takes the form

$$
F(\theta ; \mu, \vec{x})=\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)\left|\tilde{\rho}_{\omega}\right|^{2}
$$

where

$$
\tilde{\rho}_{\omega}=\sum_{n} \mathrm{e}^{\mathrm{i} \omega \theta_{n}}=\oint \mathrm{d} \theta \rho(\theta) \mathrm{e}^{\mathrm{i} \omega \theta}
$$

where $\rho(\theta)$ is the eigenvalue distribution. Since,

$$
\rho(\theta) \geq 0, \quad \oint \mathrm{~d} \theta \rho(\theta)=N
$$

$\tilde{\rho}_{\omega}$ are not free fields!

The free energy takes the form

$$
F(\theta ; \mu, \vec{x})=\sum_{\omega=1}^{\infty} \frac{1}{\omega}\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)\left|\tilde{\rho}_{\omega}\right|^{2}
$$

where

$$
\tilde{\rho}_{\omega}=\sum_{n} \mathrm{e}^{\mathrm{i} \omega \theta_{n}}=\oint \mathrm{d} \theta \rho(\theta) \mathrm{e}^{\mathrm{i} \omega \theta}
$$

where $\rho(\theta)$ is the eigenvalue distribution.Since,

$$
\rho(\theta) \geq 0, \quad \oint \mathrm{~d} \theta \rho(\theta)=N,
$$

$\tilde{\rho}_{\omega}$ are not free fields!
However...

Phase transition

When,

$$
\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)=0
$$

there is an apparent zero mode \Rightarrow singularity in the Free energy?
Singularity $=$ Phase transition
Evaluation by Polya Enumeration Theorem $(x=0)$: Phase
transition at $\mu_{c}=\ln 2$!
Another interesting feature: Contribution $\sim O\left(N^{2}\right)$ and $\sim O(N)$ canceled! The leading contribution is at most finite as $N \rightarrow \infty$!

Phase transition

When,

$$
\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)=0,
$$

there is an apparent zero mode \Rightarrow singularity in the Free energy?

$$
\text { Singularity }=\text { Phase transition }
$$

Evaluation by Polya Enumeration Theorem $(x=0)$: Phase
transition at $\mu_{c}=\ln 2$!
Another interesting feature: Contribution $\sim O\left(N^{2}\right)$ and $\sim O(N)$ canceled! The leading contribution is at most finite as $N \rightarrow \infty$!

Phase transition

When,

$$
\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)=0
$$

there is an apparent zero mode \Rightarrow singularity in the Free energy?

Singularity $=$ Phase transition

Evaluation by Polya Enumeration Theorem $(x=0)$: Phase transition at $\mu_{c}=\ln 2$!
Another interesting feature: Contribution $\sim O\left(N^{2}\right)$ and $\sim O(N)$ canceled! The leading contribution is at most finite as $N \rightarrow \infty$!

Phase transition

When,

$$
\left(1-2 \mathrm{e}^{-\omega \mu} \cosh \left(\frac{\omega x}{2}\right)\right)=0
$$

there is an apparent zero mode \Rightarrow singularity in the Free energy?

$$
\text { Singularity }=\text { Phase transition }
$$

Evaluation by Polya Enumeration Theorem $(x=0)$: Phase transition at $\mu_{c}=\ln 2$!
Another interesting feature: Contribution $\sim O\left(N^{2}\right)$ and $\sim O(N)$ canceled! The leading contribution is at most finite as $N \rightarrow \infty$!

Small chemical potential μ

- When μ is large the repulsion dominates and one expects an eigenvalue- θ distribution which is almost uniform.
- The scale of interaction is $\ell_{\text {int }} \sim \sqrt{\mu_{+} \mu_{-}}$and when $\ell_{\text {int }} \lesssim 2 \pi$ the eigenvalues can condense in a compact region of this size.
- For small μ_{1} the expansion in nowers of $e^{-\mu_{ \pm}}$is far from optimal.

We can try an alternative approach.

Small chemical potential μ

- When μ is large the repulsion dominates and one expects an eigenvalue- θ distribution which is almost uniform.
- The scale of interaction is $\ell_{\text {int }} \sim \sqrt{\mu_{+} \mu_{-}}$and when $\ell_{\text {int }} \lesssim 2 \pi$ the eigenvalues can condense in a compact region of this size.
- For small $\mu_{ \pm}$the expansion in powers of $\mathrm{e}^{-\mu_{ \pm}}$is far from optimal

We can try an alternative approach.

Small chemical potential μ

- When μ is large the repulsion dominates and one expects an eigenvalue- θ distribution which is almost uniform.
- The scale of interaction is $\ell_{\text {int }} \sim \sqrt{\mu_{+} \mu_{-}}$and when $\ell_{\text {int }} \lesssim 2 \pi$ the eigenvalues can condense in a compact region of this size.
- For small $\mu_{ \pm}$the expansion in powers of $\mathrm{e}^{-\mu_{ \pm}}$is far from optimal...

We can try an alternative approach.

Small chemical potential μ

- When μ is large the repulsion dominates and one expects an eigenvalue- θ distribution which is almost uniform.
- The scale of interaction is $\ell_{\text {int }} \sim \sqrt{\mu_{+} \mu_{-}}$and when $\ell_{\text {int }} \lesssim 2 \pi$ the eigenvalues can condense in a compact region of this size.
- For small $\mu_{ \pm}$the expansion in powers of $\mathrm{e}^{-\mu_{ \pm}}$is far from optimal...

We can try an alternative approach...

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant.
constant mode is only expected to contribute to the
thermodynamical functions.)
The zero pressure condition at the center of the condensate gives
$\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$
Evaluation of the effective action (Entropy) yields,

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant. (In fact, the constant mode is only expected to contribute to the thermodynamical functions.)
The zero pressure condition at the center of the condensate gives
$\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$
Evaluation of the effective action (Entropy) yields,

Of order N^{2} ! The model behaves as a system of N^{2} particles -

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant. (In fact, the constant mode is only expected to contribute to the thermodynamical functions.)
The zero pressure condition at the center of the condensate gives $\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$.
Evaluation of the effective action (Entropy) yields,

Of order N^{2} ! The model behaves as a system of N^{2} particles -

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant. (In fact, the constant mode is only expected to contribute to the thermodynamical functions.)
The zero pressure condition at the center of the condensate gives
$\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$.
Evaluation of the effective action (Entropy) yields,

$$
S_{\mathrm{eff}}(L, S)=4 N^{2}\left(\sqrt{\frac{L_{+}}{L_{-}}} \ln \left|\frac{1+\sqrt{\frac{L_{-}}{L_{+}}}}{1-\sqrt{\frac{L_{-}}{L_{+}}}}\right|+\sqrt{\frac{L_{-}}{L_{+}}} \ln \left|\frac{1+\sqrt{\frac{L_{+}}{L_{-}}}}{1-\sqrt{\frac{L_{+}}{L_{-}}}}\right|\right)
$$

Of order N^{2} ! The model behaves as a system of N^{2} particles -

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant. (In fact, the constant mode is only expected to contribute to the thermodynamical functions.)
The zero pressure condition at the center of the condensate gives $\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$.
Evaluation of the effective action (Entropy) yields,

$$
S_{\mathrm{eff}}(L, S)=4 N^{2}\left(\sqrt{\frac{L_{+}}{L_{-}}} \ln \left|\frac{1+\sqrt{\frac{L_{-}}{L_{+}}}}{1-\sqrt{\frac{L_{-}}{L_{+}}}}\right|+\sqrt{\frac{L_{-}}{L_{+}}} \ln \left|\frac{1+\sqrt{\frac{L_{+}}{L_{-}}}}{1-\sqrt{\frac{L_{+}}{L_{-}}}}\right|\right)
$$

Of order N^{2} ! The model behaves as a system of N^{2} particles -

Incompressible liquid approximation

Consider situation when $\sqrt{\mu_{+} \mu_{-}} \ll 2 \pi$ and assume that the eigenvalues θ_{n} condensed in some region of size Λ. Approximate the density inside the condensate to be constant. (In fact, the constant mode is only expected to contribute to the thermodynamical functions.)
The zero pressure condition at the center of the condensate gives $\Lambda=2 \sqrt{\mu_{+} \mu_{-}}$.
Evaluation of the effective action (Entropy) yields,

$$
S_{\mathrm{eff}}(L, S)=4 N^{2}\left(\sqrt{\frac{L_{+}}{L_{-}}} \ln \left|\frac{1+\sqrt{\frac{L_{-}}{L_{+}}}}{1-\sqrt{\frac{L_{-}}{L_{+}}}}\right|+\sqrt{\frac{L_{-}}{L_{+}}} \ln \left|\frac{1+\sqrt{\frac{L_{+}}{L_{-}}}}{1-\sqrt{\frac{L_{+}}{L_{-}}}}\right|\right)
$$

Of order N^{2} ! The model behaves as a system of N^{2} particles STRING BITS!

Inclusion of H_{2}

Knowing the eigenvalue distribution we can compute the ev $\left\langle H_{2}\right\rangle_{0}$ for each case.

- In the analytic region all contribution down to order N^{0} cancels leaving with at most regular contribution for $N \rightarrow \infty$.
- In the region of small $\mu_{ \pm}$, plugging the found eigenvalue distribution yields

where

Inclusion of H_{2}

Knowing the eigenvalue distribution we can compute the ev $\left\langle\mathrm{H}_{2}\right\rangle_{0}$ for each case.

- In the analytic region all contribution down to order N^{0} cancels leaving with at most regular contribution for $N \rightarrow \infty$.
- In the region of small $\mu_{ \pm}$, plugging the found eigenvalue distribution yields

where

Inclusion of H_{2}

Knowing the eigenvalue distribution we can compute the ev $\left\langle H_{2}\right\rangle_{0}$ for each case.

- In the analytic region all contribution down to order N^{0} cancels leaving with at most regular contribution for $N \rightarrow \infty$.
- In the region of small $\mu_{ \pm}$, plugging the found eigenvalue distribution yields

$$
\left\langle H_{2}\right\rangle_{0}=N^{2} \frac{\beta \lambda}{2(2 \pi)^{2}} F\left(\sqrt{\frac{L_{-}}{L_{+}}}\right)
$$

where

Inclusion of H_{2}

Knowing the eigenvalue distribution we can compute the ev $\left\langle\mathrm{H}_{2}\right\rangle_{0}$ for each case.

- In the analytic region all contribution down to order N^{0} cancels leaving with at most regular contribution for $N \rightarrow \infty$.
- In the region of small $\mu_{ \pm}$, plugging the found eigenvalue distribution yields

$$
\left\langle H_{2}\right\rangle_{0}=N^{2} \frac{\beta \lambda}{2(2 \pi)^{2}} F\left(\sqrt{\frac{L_{-}}{L_{+}}}\right)
$$

where

$$
\begin{aligned}
& F(\xi)= \int_{-1}^{1} \mathrm{~d} \lambda\left\{-\ln \left|\frac{\lambda^{2}-(1-\xi)^{2}}{\lambda^{2}-(1+\xi)^{2}}\right| \ln \left|\frac{\lambda^{2}-\left(1+\xi^{-1}\right)^{2}}{\lambda^{2}-\left(1-\xi^{-1}\right)^{2}}\right|\right. \\
&\left.+\frac{1}{4} \ln \left|\frac{-\xi^{2}+(\lambda+1)^{2}}{-\xi^{2}+(\lambda-1)^{2}}\right| \ln \left|\frac{-\xi^{-2}+(\lambda+1)^{2}}{-\xi^{-2}+(\lambda-1)^{2}}\right|\right\}
\end{aligned}
$$

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET
computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends

Thank you!

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends.

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends.

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends...

Conclusions

- We considered a (thermo)dynamical system corresponding to RG flow in $\mathcal{N}=4$ SYM
- For large L we consider the one-loop contribution to the dilatation operator as a perturbation to the classical one described by the gauged matrix oscillator
- We find signals of phase transition; compatibility with PET computation
- Path integral approach is more universal
- Back reaction not computed
- More loose ends...

Thank you!

