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Main results based on:

• Systematics of M-theory spinorial geometry
U. Gran, G. Papadopoulos, D.R.; hep-th/0503046,

• Systematics of IIB spinorial geometry
U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0507143,

• Maximally supersymmetric G-backgrounds of IIB supergravity
U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0604079,

• N = 31 is not IIB
U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0606049.



Introduction

Supersymmetric solutions of supergravity play an important role in
string/M-theory:

• entropy matching: black holes and configurations of M-/D-branes,

• phenomenology: flux compactifications to N = 1 in four dimensions,

• AdS/CFT: AdS5 × S5, its Penrose limit and deformations with less
supersymmetry,

• .....
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• entropy matching: black holes and configurations of M-/D-branes,

• phenomenology: flux compactifications to N = 1 in four dimensions,

• AdS/CFT: AdS5 × S5, its Penrose limit and deformations with less
supersymmetry,

• .....

Usually via Ansätze of metric and fluxes based on physical intuition.
Possible to miss unexpected and exciting backgrounds (e.g. black
rings).

Desirable to have classifications!



Classifications

What about classifications? e.g.

• D = 4: minimal N = 2 [a] and coupled to vectors [b]

• D = 5: minimal N = 1 [c]

• D = 6: minimal N = 1 [d]

Theories with 8 supersymmetries and solutions with N = 4, 8.

Two techniques: Newman-Penrose (’82, ’83) & spinor bilinears (’02,...).

[a]: Gibbons, Hull ’82, Tod, ’83, [b]: Meessen, Ortı́n ’06, [c]: Gauntlett et al ’02, [d]: Gutowski, Martelli, Reall ’03.



Classifications

What about classifications? e.g.

• D = 4: minimal N = 2 [a] and coupled to vectors [b]

• D = 5: minimal N = 1 [c]

• D = 6: minimal N = 1 [d]

Theories with 8 supersymmetries and solutions with N = 4, 8.

Two techniques: Newman-Penrose (’82, ’83) & spinor bilinears (’02,...).

We propose spinorial geometry as a new technique for more complicated
cases such as maximal supergravity.

We will focus on IIB since that is the most difficult case (coset scalars,
more - complex & self-dual - fluxes, chiral fermions), but the story
generalises to other supergravities.

[a]: Gibbons, Hull ’82, Tod, ’83, [b]: Meessen, Ortı́n ’06, [c]: Gauntlett et al ’02, [d]: Gutowski, Martelli, Reall ’03.



Supersymmetric backgrounds with fluxes

Without fluxes: susy ⇒ special holonomy - Berger classification.



Supersymmetric backgrounds with fluxes

Without fluxes: susy ⇒ special holonomy - Berger classification.

With fluxes: susy ⇒ G-structures - no classification.

Supercovariant connection 6= Levi-Civita connection:
D = d + Ω + F 6= ∇ = d + Ω

Holonomy(D) 6= gauge group Spin(dim− 1, 1)

Massless/ungauged maximal supergravities: holonomy SL(32,R) [a]
11D: Dm = ∂M + 1

4ΩM,PQΓPQ − 1
288 (ΓM

PQRSFPQRS − 8FMPQRΓPQR)
⇒ Spin(10, 1) ⇒ extends this to SL(32,R)

[a]: Hull ’03, Papadopoulos, Tsimpis ’03, ’03.



Supersymmetric backgrounds with fluxes

Without fluxes: susy ⇒ special holonomy - Berger classification.

With fluxes: susy ⇒ G-structures - no classification.

Supercovariant connection 6= Levi-Civita connection:
D = d + Ω + F 6= ∇ = d + Ω

Holonomy(D) 6= gauge group Spin(dim− 1, 1)

Massless/ungauged maximal supergravities: holonomy SL(32,R) [a]
11D: Dm = ∂M + 1

4ΩM,PQΓPQ − 1
288 (ΓM

PQRSFPQRS − 8FMPQRΓPQR)
⇒ Spin(10, 1) ⇒ extends this to SL(32,R)

Inequality is reason for complications with fluxes
(e.g. zero curvature 6⇒ trivialisable connection

6⇒ gauge where Killing spinors are constant).

[a]: Hull ’03, Papadopoulos, Tsimpis ’03, ’03.



Solving the Killing spinor equations

Which G-structures does one find? Different methods to solve the KSE:

Spinor bilinears:

• Uses the N2 relations ∇κij ∼ Fκij where κij = ε̄iΓ(p)εj,

• Necessary conditions, check sufficiency by hand,



Solving the Killing spinor equations

Which G-structures does one find? Different methods to solve the KSE:

Spinor bilinears:

• Uses the N2 relations ∇κij ∼ Fκij where κij = ε̄iΓ(p)εj,

• Necessary conditions, check sufficiency by hand,

Spinorial geometry:

• Basis in the space of spinors and description in terms of forms,

• Analyses the N Killing spinor equations Dεi = 0 directly,

• Necessary and sufficient conditions.



Basis in space of spinors

Spinor in terms of forms [a]:

space of Dirac spinors ε
of Spin(9, 1)

dimension 64
≡

space of forms η
spanned by e1, . . . , e5

(with compl. coeff.)
dimension 2 · 25

Weyl spinors ≡ even/odd forms & Majorana spinors ≡ η∗ = Γ6789η.

[a]: Lawson, Michelsohn ’89, Wang ’89, Harvey ’90



Basis in space of spinors

Spinor in terms of forms [a]:

space of Dirac spinors ε
of Spin(9, 1)

dimension 64
≡

space of forms η
spanned by e1, . . . , e5

(with compl. coeff.)
dimension 2 · 25

Weyl spinors ≡ even/odd forms & Majorana spinors ≡ η∗ = Γ6789η.

ΓM -matrices in null and holomorphic basis M = (−, +, α, ᾱ):
Γaη =

√
2ea ∧ η for a = (−, α)

Γāη =
√

2eayη for ā = (+, ᾱ)
⇔ creation operators

annihilation operators

SU(4)-covariant action of Γ-matrices on spinor.

[a]: Lawson, Michelsohn ’89, Wang ’89, Harvey ’90



IIB Killing spinor equtions

Arbitrary IIB spinor: (with a = (α, 5))

ε = (f1 + if2)1 + (ga1a2
1 + iga1a2

2 )ea1a2 + (ha1···a4
1 + iha1···a4

2 )ea1···a4

2 · 1 2 · 10 2 · 5
(fi, gi, hi functions of space-time coordinates)

[a]: Papadopoulos et al ’04, ’05, Mac Conamhna ’04, ’05.
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ε = (f1 + if2)1 + (ga1a2
1 + iga1a2

2 )ea1a2 + (ha1···a4
1 + iha1···a4

2 )ea1···a4

2 · 1 2 · 10 2 · 5
(fi, gi, hi functions of space-time coordinates)

Substitute ε into IIB Killing spinor eqs:
DM ε = (∂M + 1

4ΩM,N1N2Γ
N1N2 − i

2QM + i
48ΓN1...N4FMN1...N4)ε

− 1
96 (ΓM

N1N2N3GN1N2N3 − 9ΓN1N2GMN1N2)(Cε)∗ = 0 ,
Aε = PNΓN (Cε)∗ + 1

24GN1N2N3Γ
N1N2N3ε = 0 ,

and expand in basis (amounts to products of Γ-matrices), and set all
coefficients equal to zero [a].

KSE reduces to linear system of equations for scalars, fluxes, spin
connection and functions f (and their derivatives) of Killing spinor.

[a]: Papadopoulos et al ’04, ’05, Mac Conamhna ’04, ’05.
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Arbitrary IIB spinor: (with a = (α, 5))

ε = (f1 + if2)1 + (ga1a2
1 + iga1a2

2 )ea1a2 + (ha1···a4
1 + iha1···a4

2 )ea1···a4
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Substitute ε into IIB Killing spinor eqs:
DM ε = (∂M + 1

4ΩM,N1N2Γ
N1N2 − i

2QM + i
48ΓN1...N4FMN1...N4)ε

− 1
96 (ΓM

N1N2N3GN1N2N3 − 9ΓN1N2GMN1N2)(Cε)∗ = 0 ,
Aε = PNΓN (Cε)∗ + 1

24GN1N2N3Γ
N1N2N3ε = 0 ,

and expand in basis (amounts to products of Γ-matrices), and set all
coefficients equal to zero [a].

KSE reduces to linear system of equations for scalars, fluxes, spin
connection and functions f (and their derivatives) of Killing spinor.

Problem of classifying supersymmetric solutions is reduced to
parametrising the N Killing spinors and solving the linear system.

[a]: Papadopoulos et al ’04, ’05, Mac Conamhna ’04, ’05.



Examples

• N = 1: Use Lorentz symmetry to bring Killing spinor to one of the
three orbit representatives with stability subgroup G:
G = Spin(7)nR8 with ε = (f1 + if2)(1 + e1234)
G = SU(4)nR8 with ε = (f1 + if2)1 + (h1 + if2)e1234

G = G2 with ε = f1(1 + e1234) + ig1(e15 + e2345)
and plug into KSE [a].

[a]: Gran, Gutowski, Papadopoulos ’05, [b]: Gran, Gutowski, Papadopoulos, Roest ’06, [c]: Gran, Gutowski, Papadopoulos, Roest ’06.
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Examples

• N = 1: Use Lorentz symmetry to bring Killing spinor to one of the
three orbit representatives with stability subgroup G:
G = Spin(7)nR8 with ε = (f1 + if2)(1 + e1234)
G = SU(4)nR8 with ε = (f1 + if2)1 + (h1 + if2)e1234

G = G2 with ε = f1(1 + e1234) + ig1(e15 + e2345)
and plug into KSE [a],

• Maximal number of G-invariant spinors: simple embedding of G [b],

• N = 31: Use Lorentz symmetry to bring orthogonal spinor to one of
the three orbit representatives [c].

[a]: Gran, Gutowski, Papadopoulos ’05, [b]: Gran, Gutowski, Papadopoulos, Roest ’06, [c]: Gran, Gutowski, Papadopoulos, Roest ’06.



Maximally supersymmetric G-backgrounds

Maximal number of G-invariant Killing spinors [a]:

G = \ N = 1 2 3 4 6 8 16 32
G2 − − − ¯ − − − −

SU(3) − − − − − ¯ − −
SU(2) − − − − − − ¯ −

1 − − − − − − − ¯
Spin(7)nR8 − ¯ − − − − − −
SU(4)nR8 − − − ¯ − − − −
Sp(2)nR8 − − − − ¯ − − −

(SU(2)× SU(2))nR8 − − − − − ¯ − −
R8 − − − − − − ¯ −

Flux deformations of gravitational solutions with same Killing spinors.

[a]: Gran, Gutowski, Papadopoulos, D.R. ’06.



Maximally supersymmetric G-backgrounds

Compact G = G2, SU(3), SU(2): [a]

Direct product:

(AdSd/2 × Sd/2 or Hpp or Mink1,d−1) × (manifold M10−d of special holonomy G)

Fluxes constrained to d-dimensional part

[a]: Gran, Gutowski, Papadopoulos, D.R. ’06.



Maximally supersymmetric G-backgrounds

Compact G = G2, SU(3), SU(2): [a]

Direct product:

(AdSd/2 × Sd/2 or Hpp or Mink1,d−1) × (manifold M10−d of special holonomy G)

Fluxes constrained to d-dimensional part

Non-compact G = K nR8, K = Spin(7), SU(4), Sp(2), SU(2)× SU(2), 1 [a]

pp-wave on 8D manifold with special holonomy K

null fluxes P−, G−mn, F−mnpq

[a]: Gran, Gutowski, Papadopoulos, D.R. ’06.



N = 31

N = 31 Killing spinors εi defining one orthogonal spinor: < εi, ν >= 0.

Use Lorentz symmetry to bring ν to one of three orbit representatives.



N = 31

N = 31 Killing spinors εi defining one orthogonal spinor: < εi, ν >= 0.

Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB ⇒ scalars and three-form field strengths vanish. [a]

No more c.c. in the diff. KSE of IIB ⇒ N even ⇒ N = 32.
NO N = 31 SOLUTIONS IN IIB!

First constraint on N in type II theories.

[a]: Gran, Gutowski, Papadopoulos, Roest ’06.
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Same result in IIA using moving G-frame method [b].
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N = 31

N = 31 Killing spinors εi defining one orthogonal spinor: < εi, ν >= 0.

Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB ⇒ scalars and three-form field strengths vanish. [a]

No more c.c. in the diff. KSE of IIB ⇒ N even ⇒ N = 32.
NO N = 31 SOLUTIONS IN IIB!

First constraint on N in type II theories.

Same result in IIA using moving G-frame method [b].

N = 31 in M-theory remains an open question.

[a]: Gran, Gutowski, Papadopoulos, Roest ’06, [b]: Bandos, De Azcárraga, Varela ’06.



Outlook

• Maximal G-backgrounds of IIB
√

• N = 31
√

• Half-maximal G-backgrounds of IIB?
– G = SU(3) with N = 4: AdS/CFT and flux compactifications [a]
– all N = 16 solutions (only one case remaining: half-max. 1)

• ... etcetera! Classification of all supersymmetric solutions?

• T-duality?

• relation to Hitchin’s generalised geometry? [b]

[a]: Graña et al ’04, ’05, [c]: Hitchin ’02, Gualtieri ’03, ’04.



IIB status report

G = \ N = 1 2 3 4 6 8 16 31 32
G2

√ ¯ ...
√ − − − − −

SU(3) − ... ... ¯ ...
√ − − −

SU(2) − ... ... ... ... ¯ √ − −
1 − ... ... ... ... ... ¯ √ √

Spin(7)nR8 √ √ − − − − − − −
SU(4)nR8 √ √

...
√ − − − − −

Sp(2)nR8 − ... ¯ ...
√ − − − −

(SU(2)× SU(2))nR8 − ... ... ¯ ...
√ − − −

R8 − ... ... ... ... ¯ √ − −

√
: Killing spinor equations have already been solved,

¯: backgrounds with half-maximal number of G-invariant spinors,
...: have more complicated linear systems,
−: do not occur.


