Classification of Supersymmetric Backgrounds of String Theory

Diederik Roest, Universitat de Barcelona Napoli, October 13, 2006

Main results based on:

- Systematics of M-theory spinorial geometry U. Gran, G. Papadopoulos, D.R.; hep-th/0503046,
- Systematics of IIB spinorial geometry
U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0507143,
- Maximally supersymmetric G-backgrounds of IIB supergravity U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0604079,
- $N=31$ is not IIB
U. Gran, J. Gutowski, G. Papadopoulos, D.R.; hep-th/0606049.

Introduction

Supersymmetric solutions of supergravity play an important role in string/M-theory:

- entropy matching: black holes and configurations of M-/D-branes,
- phenomenology: flux compactifications to $\mathcal{N}=1$ in four dimensions,
- AdS/CFT: $A d S_{5} \times S^{5}$, its Penrose limit and deformations with less supersymmetry,
-

Introduction

Supersymmetric solutions of supergravity play an important role in string/M-theory:

- entropy matching: black holes and configurations of M-/D-branes,
- phenomenology: flux compactifications to $\mathcal{N}=1$ in four dimensions,
- AdS/CFT: $\operatorname{Ad} S_{5} \times S^{5}$, its Penrose limit and deformations with less supersymmetry,
-

Usually via Ansätze of metric and fluxes based on physical intuition. Possible to miss unexpected and exciting backgrounds (e.g. black rings).

Desirable to have classifications!

Classifications

What about classifications? e.g.

- $D=4:$ minimal $\mathcal{N}=2$ [a] and coupled to vectors $[\mathrm{b}]$
- $D=5$: minimal $\mathcal{N}=1$ [c]
- $D=6$: minimal $\mathcal{N}=1$ [d]

Theories with 8 supersymmetries and solutions with $N=4,8$.
Two techniques: Newman-Penrose ('82, '83) \& spinor bilinears ('02,...).

Classifications

What about classifications? e.g.

- $D=4:$ minimal $\mathcal{N}=2$ [a] and coupled to vectors [b]
- $D=5:$ minimal $\mathcal{N}=1$ [c]
- $D=6:$ minimal $\mathcal{N}=1[d]$

Theories with 8 supersymmetries and solutions with $N=4,8$.
Two techniques: Newman-Penrose ('82, '83) \& spinor bilinears ('02,...).

We propose spinorial geometry as a new technique for more complicated cases such as maximal supergravity.
We will focus on IIB since that is the most difficult case (coset scalars, more - complex \& self-dual - fluxes, chiral fermions), but the story generalises to other supergravities.

Supersymmetric backgrounds with fluxes

Without fluxes: susy \Rightarrow special holonomy - Berger classification.

Supersymmetric backgrounds with fluxes

Without fluxes: susy \Rightarrow special holonomy - Berger classification.

With fluxes: susy $\Rightarrow G$-structures - no classification.
Supercovariant connection \neq Levi-Civita connection:

$$
D=d+\Omega+F \neq \nabla=d+\Omega
$$

$\operatorname{Holonomy}(D) \neq \operatorname{gauge} \operatorname{group} \operatorname{Spin}(\operatorname{dim}-1,1)$

Massless/ungauged maximal supergravities: holonomy $S L(32, \mathbb{R})$ [a]
11D: $\quad D_{m}=\partial_{M}+\frac{1}{4} \Omega_{M, P Q} \Gamma^{P Q}-\frac{1}{288}\left(\Gamma_{M}^{P Q R S} \mathrm{~F}_{P Q R S}-8 \mathrm{~F}_{M P Q R} \Gamma^{P Q R}\right)$

$$
\Rightarrow \operatorname{Spin}(10,1) \quad \Rightarrow \text { extends this to } S L(32, \mathbb{R})
$$

Supersymmetric backgrounds with fluxes

Without fluxes: susy \Rightarrow special holonomy - Berger classification.

With fluxes: susy $\Rightarrow G$-structures - no classification.
Supercovariant connection \neq Levi-Civita connection:

$$
D=d+\Omega+F \neq \nabla=d+\Omega
$$

$\operatorname{Holonomy}(D) \neq$ gauge group $\operatorname{Spin}(\operatorname{dim}-1,1)$

Massless/ungauged maximal supergravities: holonomy $S L(32, \mathbb{R})$ [a]
11D: $\quad D_{m}=\partial_{M}+\frac{1}{4} \Omega_{M, P Q} \Gamma^{P Q}-\frac{1}{288}\left(\Gamma_{M}^{P Q R S} \mathrm{~F}_{P Q R S}-8 \mathrm{~F}_{M P Q R} \Gamma^{P Q R}\right)$

$$
\Rightarrow \operatorname{Spin}(10,1) \quad \Rightarrow \text { extends this to } S L(32, \mathbb{R})
$$

Inequality is reason for complications with fluxes
(e.g. zero curvature \nRightarrow trivialisable connection
\nRightarrow gauge where Killing spinors are constant).

Solving the Killing spinor equations

Which G-structures does one find? Different methods to solve the KSE:

Spinor bilinears:

- Uses the N^{2} relations $\nabla \kappa_{i j} \sim F \kappa_{i j}$ where $\kappa_{i j}=\bar{\epsilon}_{i} \Gamma^{(p)} \epsilon_{j}$,
- Necessary conditions, check sufficiency by hand,

```
Solving the Killing spinor equations
```

Which G-structures does one find? Different methods to solve the KSE:

Spinor bilinears:

- Uses the N^{2} relations $\nabla \kappa_{i j} \sim F \kappa_{i j}$ where $\kappa_{i j}=\bar{\epsilon}_{i} \Gamma^{(p)} \epsilon_{j}$,
- Necessary conditions, check sufficiency by hand,

Spinorial geometry:

- Basis in the space of spinors and description in terms of forms,
- Analyses the N Killing spinor equations $D \epsilon_{i}=0$ directly,
- Necessary and sufficient conditions.

Basis in space of spinors

Spinor in terms of forms [a]:
space of Dirac spinors ϵ of $\operatorname{Spin}(9,1)$ dimension 64
space of forms η
spanned by e_{1}, \ldots, e_{5}
(with compl. coeff.)
dimension $2 \cdot 2^{5}$

Weyl spinors \equiv even/odd forms \& Majorana spinors $\equiv \eta^{*}=\Gamma_{6789} \eta$.

Basis in space of spinors

Spinor in terms of forms [a]:
space of Dirac spinors ϵ of $\operatorname{Spin}(9,1)$
space of forms η
dimension $64 \quad=\quad$ (with compl. coeff.)
dimension $2 \cdot 2^{5}$

Weyl spinors \equiv even/odd forms \& Majorana spinors $\equiv \eta^{*}=\Gamma_{6789} \eta$.
Γ_{M}-matrices in null and holomorphic basis $M=(-,+, \alpha, \bar{\alpha})$:

$$
\begin{array}{ll}
\Gamma_{a} \eta=\sqrt{2} e_{a} \wedge \eta & \text { for } a=(-, \alpha) \\
\left.\Gamma_{\bar{a}} \eta=\sqrt{2} e_{a}\right\lrcorner \eta & \text { for } \bar{a}=(+, \bar{\alpha})
\end{array} \Leftrightarrow \quad \begin{aligned}
& \text { creation operators } \\
& \text { annihilation operators }
\end{aligned}
$$

$S U(4)$-covariant action of Γ-matrices on spinor.

IIB Killing spinor equtions

Arbitrary IIB spinor: (with $a=(\alpha, 5)$)

$$
\begin{gathered}
\epsilon=\left(f_{1}+i f_{2}\right) 1+\left(g_{1}^{a_{1} a_{2}}+i g_{2}^{a_{1} a_{2}}\right) e_{a_{1} a_{2}}+\left(h_{1}^{a_{1} \cdots a_{4}}+i h_{2}^{a_{1} \cdots a_{4}}\right) e_{a_{1} \cdots a_{4}} \\
2 \cdot 10
\end{gathered}
$$

(f_{i}, g_{i}, h_{i} functions of space-time coordinates)

IIB Killing spinor equtions

Arbitrary IIB spinor: (with $a=(\alpha, 5)$)

$$
\begin{array}{cc}
\epsilon=\left(f_{1}+i f_{2}\right) 1+\left(g_{1}^{a_{1} a_{2}}+i g_{2}^{a_{1} a_{2}}\right) e_{a_{1} a_{2}}+\left(h_{1}^{a_{1} \cdots a_{4}}+i h_{2}^{a_{1} \cdots a_{4}}\right) e_{a_{1} \cdots a_{4}} \\
2 \cdot 10 \cdot 5
\end{array}
$$

(f_{i}, g_{i}, h_{i} functions of space-time coordinates)

Substitute ϵ into IIB Killing spinor eqs:

$$
\begin{aligned}
& D_{M} \epsilon=\left(\partial_{M}+\frac{1}{4} \Omega_{M, N_{1} N_{2}} \Gamma^{N_{1} N_{2}}-\frac{i}{2} Q_{M}+\frac{i}{48} \Gamma^{N_{1} \ldots N_{4}} F_{M N_{1} \ldots N_{4}}\right) \epsilon \\
& \quad-\frac{1}{96}\left(\Gamma_{M}{ }^{N_{1} N_{2} N_{3}} G_{\left.N_{1} N_{2} N_{3}-9 \Gamma^{N_{1} N_{2}} G_{M N_{1} N_{2}}\right)(C \epsilon)^{*}=0,}^{A \epsilon=P_{N} \Gamma^{N G}(C \epsilon)^{*}+\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon=0,}\right. \text {, }
\end{aligned}
$$

and expand in basis (amounts to products of Γ-matrices), and set all coefficients equal to zero [a].
KSE reduces to linear system of equations for scalars, fluxes, spin connection and functions f (and their derivatives) of Killing spinor.

IIB Killing spinor equtions

Arbitrary IIB spinor: (with $a=(\alpha, 5)$)

$$
\epsilon=\left(\begin{array}{c}
\left(f_{1}+i f_{2}\right) 1+\left(g_{1}^{a_{1} a_{2}}+i g_{2}^{a_{1} a_{2}}\right) e_{a_{1} a_{2}}+\left(h_{1}^{a_{1} \cdots a_{4}}+i h_{2}^{a_{1} \cdots a_{4}}\right) e_{a_{1} \cdots a_{4}} \\
2 \cdot 10
\end{array}\right.
$$

(f_{i}, g_{i}, h_{i} functions of space-time coordinates)

Substitute ϵ into IIB Killing spinor eqs:

$$
\begin{aligned}
& D_{M} \epsilon=\left(\partial_{M}+\frac{1}{4} \Omega_{M, N_{1} N_{2}} \Gamma^{N_{1} N_{2}}-\frac{i}{2} Q_{M}+\frac{i}{48} \Gamma^{N_{1} \ldots N_{4}} F_{M N_{1} \ldots N_{4}}\right) \epsilon \\
& \quad-\frac{1}{96}\left(\Gamma_{M}{ }^{N_{1} N_{2} N_{3}} G_{\left.N_{1} N_{2} N_{3}-9 \Gamma^{N_{1} N_{2}} G_{M N_{1} N_{2}}\right)(C \epsilon)^{*}=0,}^{A \epsilon=P_{N} \Gamma^{N G}(C \epsilon)^{*}+\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon=0,}\right. \text {, }
\end{aligned}
$$

and expand in basis (amounts to products of Γ-matrices), and set all coefficients equal to zero [a].
KSE reduces to linear system of equations for scalars, fluxes, spin connection and functions f (and their derivatives) of Killing spinor.
Problem of classifying supersymmetric solutions is reduced to parametrising the N Killing spinors and solving the linear system.

Examples

- $N=1$: Use Lorentz symmetry to bring Killing spinor to one of the three orbit representatives with stability subgroup G :

$$
\begin{array}{ll}
G=\operatorname{Spin}(7) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right)\left(1+e_{1234}\right) \\
G=S U(4) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right) 1+\left(h_{1}+i f_{2}\right) e_{1234} \\
G=G_{2} & \text { with } \epsilon=f_{1}\left(1+e_{1234}\right)+i g_{1}\left(e_{15}+e_{2345}\right) \\
& \\
\text { and plug into KSE [a]. }
\end{array}
$$

Examples

- $N=1$: Use Lorentz symmetry to bring Killing spinor to one of the three orbit representatives with stability subgroup G :

$$
\begin{array}{ll}
G=\operatorname{Spin}(7) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right)\left(1+e_{1234}\right) \\
G=S U(4) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right) 1+\left(h_{1}+i f_{2}\right) e_{1234} \\
G=G_{2} & \text { with } \epsilon=f_{1}\left(1+e_{1234}\right)+i g_{1}\left(e_{15}+e_{2345}\right) \\
\text { and plug into KSE [a], }
\end{array}
$$

- Maximal number of G-invariant spinors: simple embedding of G [b].

Examples

- $N=1$: Use Lorentz symmetry to bring Killing spinor to one of the three orbit representatives with stability subgroup G :

$$
\begin{array}{ll}
G=\operatorname{Spin}(7) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right)\left(1+e_{1234}\right) \\
G=S U(4) \ltimes \mathbb{R}^{8} & \text { with } \epsilon=\left(f_{1}+i f_{2}\right) 1+\left(h_{1}+i f_{2}\right) e_{1234} \\
G=G_{2} & \text { with } \epsilon=f_{1}\left(1+e_{1234}\right)+i g_{1}\left(e_{15}+e_{2345}\right)
\end{array}
$$

and plug into KSE [a],

- Maximal number of G-invariant spinors: simple embedding of G [b],
- $N=31$: Use Lorentz symmetry to bring orthogonal spinor to one of the three orbit representatives [c].

Maximally supersymmetric G-backgrounds

Maximal number of G-invariant Killing spinors [a]:

$G=\backslash N=$	1	2	3	4	6	8	16	32
G_{2}	-	-	-	\odot	-	-	-	-
$S U(3)$	-	-	-	-	-	\odot	-	-
$S U(2)$	-	-	-	-	-	-	\odot	-
1	-	-	-	-	-	-	-	\odot
$\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$	-	\odot	-	-	-	-	-	-
$S U(4) \ltimes \mathbb{R}^{8}$	-	-	-	\odot	-	-	-	-
$S p(2) \ltimes \mathbb{R}^{8}$	-	-	-	-	\odot	-	-	-
$(S U(2) \times S U(2)) \ltimes \mathbb{R}^{8}$	-	-	-	-	-	\odot	-	-
\mathbb{R}^{8}	-	-	-	-	-	-	\odot	-

Flux deformations of gravitational solutions with same Killing spinors.

Maximally supersymmetric G-backgrounds

Compact $G=G_{2}, S U(3), S U(2):$ [a]
Direct product:
$\left(A d S_{d / 2} \times S^{d / 2}\right.$ or Hpp or $\left.\operatorname{Mink}_{1, d-1}\right) \times\left(\right.$ manifold M_{10-d} of special holonomy $\left.G\right)$ Fluxes constrained to d-dimensional part

Maximally supersymmetric G-backgrounds

Compact $G=G_{2}, S U(3), S U(2):$ [a]
Direct product:
$\left(A d S_{d / 2} \times S^{d / 2}\right.$ or Hpp or $\left.\operatorname{Mink}_{1, d-1}\right) \times\left(\right.$ manifold M_{10-d} of special holonomy $\left.G\right)$ Fluxes constrained to d-dimensional part

Non-compact $G=K \ltimes \mathbb{R}^{8}, K=\operatorname{Spin}(7), S U(4), S p(2), S U(2) \times S U(2), 1$ [a]
pp-wave on 8D manifold with special holonomy K null fluxes $P_{-}, G_{-m n}, F_{-m n p q}$

$$
N=31
$$

$N=31$ Killing spinors ϵ_{i} defining one orthogonal spinor: $\left\langle\epsilon_{i}, \nu\right\rangle=0$.
Use Lorentz symmetry to bring ν to one of three orbit representatives.

$$
N=31
$$

$N=31$ Killing spinors ϵ_{i} defining one orthogonal spinor: $\left\langle\epsilon_{i}, \nu\right\rangle=0$.
Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB \Rightarrow scalars and three-form field strengths vanish. [a]
No more c.c. in the diff. KSE of IIB $\Rightarrow N$ even $\Rightarrow N=32$. NO $N=31$ SOLUTIONS IN IIB!

First constraint on N in type II theories.

$$
N=31
$$

$N=31$ Killing spinors ϵ_{i} defining one orthogonal spinor: $\left\langle\epsilon_{i}, \nu\right\rangle=0$.

Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB \Rightarrow scalars and three-form field strengths vanish. [a]
No more c.c. in the diff. KSE of IIB $\Rightarrow N$ even $\Rightarrow N=32$. NO $N=31$ SOLUTIONS IN IIB!

First constraint on N in type II theories.

Same result in IIA using moving G-frame method [b].

$$
N=31
$$

$N=31$ Killing spinors ϵ_{i} defining one orthogonal spinor: $\left\langle\epsilon_{i}, \nu\right\rangle=0$.

Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB \Rightarrow scalars and three-form field strengths vanish. [a]
No more c.c. in the diff. KSE of IIB $\Rightarrow N$ even $\Rightarrow N=32$. NO $N=31$ SOLUTIONS IN IIB!

First constraint on N in type II theories.

Same result in IIA using moving G-frame method [b].
$N=31$ in M-theory remains an open question.

Outlook

- Maximal G-backgrounds of IIB $\sqrt{ }$
- $N=31$
- Half-maximal G-backgrounds of IIB?
- $G=S U(3)$ with $N=4$: AdS/CFT and flux compactifications [a]
- all $N=16$ solutions (only one case remaining: half-max. 1)
- ... etcetera! Classification of all supersymmetric solutions?
- T-duality?
- relation to Hitchin's generalised geometry? [b]

IIB status report

$G=\backslash N=$	1	2	3	4	6	8	16	31	32
G_{2}	$\sqrt{ }$	\odot	\ldots	$\sqrt{ }$	-	-	-	-	-
$S U(3)$	-	\ldots	\ldots	\odot	\ldots	$\sqrt{ }$	-	-	-
$S U(2)$	-	\ldots	\ldots	\ldots	\ldots	\odot	$\sqrt{ }$	-	-
1	-	\ldots	\ldots	\ldots	\ldots	\ldots	\odot	$\sqrt{ }$	$\sqrt{ }$
$\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$	$\sqrt{ }$	$\sqrt{ }$	-	-	-	-	-	-	-
$S U(4) \ltimes \mathbb{R}^{8}$	$\sqrt{ }$	$\sqrt{ }$	\ldots	$\sqrt{ }$	-	-	-	-	-
$S p(2) \ltimes \mathbb{R}^{8}$	-	\ldots	\odot	\ldots	$\sqrt{ }$	-	-	-	-
$(S U(2) \times S U(2)) \ltimes \mathbb{R}^{8}$	-	\ldots	\ldots	\odot	\ldots	$\sqrt{ }$	-	-	-
\mathbb{R}^{8}	-	\ldots	\ldots	\ldots	\ldots	\odot	$\sqrt{ }$	-	-

$\sqrt{ }$: Killing spinor equations have already been solved,
\odot : backgrounds with half-maximal number of G-invariant spinors,
...: have more complicated linear systems,

- : do not occur.

