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@ Compactifications on maximally symmetric spaces

@ Very nice geometric and algebraic properties

@ Negative curvature hyperbolic spaces [Kehagias, Russo]
@ Stability of non-supersymmetric backgrounds

e Compactification

@ Dual theories

@ Cosmology [Townsend]

:

Domenico Orlando Compactifications on Hyperbolic Spaces



Why
oce

Avant-premiere

e Hyperbolic space solutions in M-theory

Domenico Orlando Compactifications on Hyperbolic Spaces



Why
oce

Avant-premiere

e Hyperbolic space solutions in M-theory
e AdS-splitting

Domenico Orlando Compactifications on Hyperbolic Spaces



Why
oce

Avant-premiere

e Hyperbolic space solutions in M-theory

e AdS-splitting

e Hyperbolic solution are stable with respect to small
perturbations even without supersymmetry

Domenico Orlando Compactifications on Hyperbolic Spaces



Why
oce

Avant-premiere

e Hyperbolic space solutions in M-theory

e AdS-splitting

e Hyperbolic solution are stable with respect to small
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Short introduction to Hyperbolic Manifolds

Maximally Symmetric Spaces

@ A n-dimensional maximally symmetric space can be
defined as a pseudosphere in n 4 1 dimensions:

€0(X0)2 4+ (Xl)Z S (Xn—l)z —l—(—,’n(X”)Z _ €L2

(coeme) | ——— |~ |~ |+t
Space || AdS, | dS, | H., | S" |
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Short introduction to Hyperbolic Manifolds

Maximally Symmetric Spaces

@ A n-dimensional maximally symmetric space can be
defined as a pseudosphere in n 4 1 dimensions:

€0(X0)2 4+ (Xl)Z S (Xn—l)z +€n(xn)2 _ €L2

(coeme) | ——— |~ |~ |+t
Space || AdS, | dS, | H., | S" |

Hyperbolic (Poincaré) Spaces

@ H, =S50(1,n)/SO(n) coset.

@ Maximally symmetric.

o Constant negative curvature R = —n (n — 1) /L? i
@ Conformally flat Cyypr = 0.
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Short introduction to Hyperbolic Manifolds

Riemann Surfaces: the Double Torus

(g

S

% «4.%
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H, /T: no moduli

@ Any finite closed manifold of constant negative curvature
isH,/I, T C SO(1,n)
@ Rigidity theorem: the geometry of a finite manifold H,, /T
is determined by its fundamental group [Mostow]
o (Algebraic) Given I'; and I'y, lattices in SO(1, n) such as
H, /T;is finite-volume, then if they are isomorphic then
they are conjugate.
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Short Introduction to Hyperbolic Manifolds

H, /T: no moduli

@ Any finite closed manifold of constant negative curvature
isH,/I, T C SO(1,n)
@ Rigidity theorem: the geometry of a finite manifold H,, /T
is determined by its fundamental group [Mostow]
o (Algebraic) Given I'; and I'y, lattices in SO(1, n) such as
H, /T;is finite-volume, then if they are isomorphic then

they are conjugate.

o (Geometric) If M and N are complete finite-volume
hyperbolic and there exist an isomorphism
f:m (M) — 1 (N), then f is induced by a unique isometry.

-
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Short introduction to Hyperbolic Manifolds

@ Generalization of Riemann surfaces.

@ Only lower bounds on the volume V > 0.166

Example: Seifert-Weber Manifold
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Short introduction to Hyperbolic Manifolds

H3/T
@ Generalization of Riemann surfaces.

@ Only lower bounds on the volume V' > 0.166

Example: Weeks Manifold

4
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AdS Splitting
@000

M-theory ansatz

Action and Notation

@ Ansatz: direct products of symmetric spaces
M1 =My X My x My X ...

@ Split the Ricci tensor in blocks
RHV‘I‘ = ki ‘5#1/{1‘
@ Choose the gauge fields as:
Fr = Quw;

where w; = /\ wj.
i€l

:
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Equations of motion

Algebraic System

@ The equation of motion are an algebraic system for k;:

2ki—R = — Zsl 0)Q?, fori =0,1,2,..

where R = ) ; d;k; is the total Ricci scalar and

. +1 ifiel,
er(i) = {

—1 otherwise.

:
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Equations of motion

Algebraic System

@ The equation of motion are an algebraic system for k;:

2ki—R = — Zsl 0)Q?, fori =0,1,2,..

where R = ) ; d;k; is the total Ricci scalar and

. +1 ifiel,
er(i) = {

—1 otherwise.

@ Negative values for k; are possible due to the stress-energy
tensor coming from fields living in other subspaces.

@ Only negative contribution on My: no-go for de Sitter.
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Splitting Series Solution

AdS Splitting

@ We consider Cartesian products
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Splitting Series Solution

AdS Splitting

@ We consider Cartesian products

@ The Ricci tensor has a block matrix form

@ If each block is a symmetric space there is a fixed choice for
the curvatures where AdS; is not distinguishable from
Ade X Hy_g4

AdS; — Ade X Hy_,
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Splitting Series Solution

AdS Splitting

@ We consider Cartesian products

@ The Ricci tensor has a block matrix form

@ If each block is a symmetric space there is a fixed choice for
the curvatures where AdS; is not distinguishable from
Ade X Hy_g4

AdS; — Ade X Hy_,

e Starting from the well known AdS; x S* one gets:

AdS, x Hs x §*

:
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Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
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Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).

:

Domenico Orlando Compactifications on Hyperbolic Spaces



AdS Splitting
[e]e]e] ]

Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).
e H, /T would remain infinite

:

Domenico Orlando Compactifications on Hyperbolic Spaces



AdS Splitting
[e]e]e] ]

Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).
e H, /T would remain infinite
e No supersymmetric compactifications for n even

:

Domenico Orlando Compactifications on Hyperbolic Spaces



AdS Splitting
[e]e]e] ]

Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).
e H, /T would remain infinite
e No supersymmetric compactifications for n even

@ If n is odd there are two Killing spinors in SO(1,n — 1)
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Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).
e H, /T would remain infinite
e No supersymmetric compactifications for n even
@ If n is odd there are two Killing spinors in SO(1,n — 1)
o If ' C SO(1,n — 1) half supersymmetry can be preserved
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Hyperbolic Compact Manifolds and Supergravity

Killing Spinors on H,, /T

@ If n is even there is one Killing spinor in SO(1,n — 1)
o To preserveit, I C SO(1,n — 3).
e H, /T would remain infinite
e No supersymmetric compactifications for n even
@ If n is odd there are two Killing spinors in SO(1,n — 1)

o If ' C SO(1,n — 1) half supersymmetry can be preserved
e No known examples

:
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Stability

General Approach

@ No protection from supersymmetry. We can check at least
the stability against scalar modes.
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Stability

General Approach

@ No protection from supersymmetry. We can check at least
the stability against scalar modes.

@ Turn on dilatation of the compact subspaces
o Write the effective, dimensionally-reduced action

@ Check the masses for the scalar fields against the
Breitenlohner-Freedman bound
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Stability

General Approach

@ No protection from supersymmetry. We can check at least
the stability against scalar modes.

@ Turn on dilatation of the compact subspaces
o Write the effective, dimensionally-reduced action

@ Check the masses for the scalar fields against the
Breitenlohner-Freedman bound

@ In the AdS-splitting case there are no tachyons.

:
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Stability

d-dimensional Action

@ Effective action

S~ / dix )/ —g@ [R(d) — %a,,cpiaﬂcpi - V(cb)}
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@ Effective action

S~ / dix )/ —g@ [R(d) — %a,,cpiaﬂcpi - V(cb)}

@ P, is the overall volume
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Stability

d-dimensional Action

@ Effective action

S~ / dix )/ —g@ [R(d) — %a,,cpiaﬂcpi - V(cb)}

@ P, is the overall volume

@ P, is the ratio between the two volumes
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Stability

d-dimensional Action

@ Effective action

S~ / dix )/ —g@ [R(d) — %a,,cpiaﬂcpi - V(cb)}

@ P, is the overall volume

@ P, is the ratio between the two volumes
@ The effective potential is

V(@) = e 2(dig1+dag2)/(d-2) o

- <_372¢1<x> R — e~202(R?) 4 y(gy, 4,2)>

:
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Four-dimensional Action £

e Consider AdS, x Hz x S*.

@ The stability is encoded in the Hessian matrix.
@ The potential has a minimum
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A Brane Source Interpretation

@ Alternative description in terms of M-branes wrapping the
hyperbolic space
@ The stability of the AdS x H x S backgrounds results from
the presence of two competing effects:
o The tension given by the M-brane trying to shrink the
internal manifold
o The pressure due to the negative curvature that tends to
blow the hyperbolic part.
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A Brane Source Interpretation

@ Alternative description in terms of M-branes wrapping the
hyperbolic space
@ The stability of the AdS x H x S backgrounds results from
the presence of two competing effects:
o The tension given by the M-brane trying to shrink the
internal manifold
o The pressure due to the negative curvature that tends to
blow the hyperbolic part.

@ Only one magnetic charge. Back-reaction of an M5-brane

:
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Mb5-brane Ansatz

@ M5 brane wrapping a H3 hyperbolic manifold
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Mb5-brane Ansatz

@ M5 brane wrapping a H3 hyperbolic manifold

@ Most simple ansatz, preserving
SO(1,2) x SO(4) x SO(1,3)

ds? = 291(") (—dx% + da? + dx%) + 29201 (dr2 + rzdﬂi) +

+ 203(0) (dxg 4 dx% I dx%(])

)
Xg

:
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Numerical Solution

@ The system can be solved numerically

o) e )
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Numerical Solution
@ The system can be solved numerically

¢1(r) ¢a(r) P(r)
@ Small-r regime: AdS, x S* x Hj solution

¢p1(r) ~logr  @a(r) ~ —logr  ¢3(r) = const.
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M5 brane

Numerical Solution

@ The system can be solved numerically

¢1(r) ¢a(r) P(r)
@ Small-r regime: AdS, x S* x Hj solution

¢p1(r) ~logr  @a(r) ~ —logr  ¢3(r) = const.

o Asymptotically flat

2 2 2

@3(r) ~ 7

p1(r) ~ =1 Pa(r) ~ 7
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Conclusions
.

What Did We See?

e Hyperbolic space solutions in M-theory

e AdS-splitting

e Hyperbolic solution stable with respect to small
perturbations even without supersymmetry

@ M5-brane wrapped around an H3 manifold

to boldly go...

@ Do supersymmetric compactifications exist?

@ Closed form solution? Phase space?
@ Type II solutions

@ Dual theories i
@ Cosmological applications
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