Compactifications on Hyperbolic Spaces

Domenico Orlando

CPHT - École polytechnique - Palaiseau (France) VUB - Bruxelles (Belgium)

October 9th, 2006 2nd RTN workshop ForcesUniverse - Napoli

Collaboration with:

C.Bachas, C.Kounnas (ENS), M.Petropoulos (CPHT).

< ロト < 同ト < ヨト < ヨト

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlir	ie				

- **1** Why are we here?
- 2 Preliminaries
- **3** The "AdS Splitting Series"
- **4** Stability
- **5** Source Brane Interpretation
- **6** Conclusions

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlin	le				

1 Why are we here?

- 2 Preliminaries
- **3** The "AdS Splitting Series"
- ④ Stability
- **5** Source Brane Interpretation
- 6 Conclusions

くぼう くほう くほう

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

A (1) × A (1) ×

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ●○	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Why a	re we here				

- Compactifications on maximally symmetric spaces
- Very nice geometric and algebraic properties
- Negative curvature hyperbolic spaces [Kehagias, Russo]
- Stability of non-supersymmetric backgrounds
- Compactification
- Dual theories
- Cosmology [Townsend]

Why ○●	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Avant-	première				

• Hyperbolic space solutions in M-theory

- AdS-splitting
- Hyperbolic solution are stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

< 回 > < 三 > < 三 >

Why ⊙●	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Avant	-première				

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution are stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

・ 同 ト ・ ヨ ト ・ ヨ

Why ⊙●	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Avant	-première				

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution are stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

A (1) > A (1) > A

Why ⊙●	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Avant	-première				

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution are stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an *H*₃ manifold

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlin	ie				

- 1 Why are we here?
- **2** Preliminaries
- **3** The "AdS Splitting Series"
- ④ Stability
- **5** Source Brane Interpretation
- 6 Conclusions

伺 ト イヨ ト イヨ ト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	•000	0000	000		O
Short i	ntroduction	n to Hyperk	oolic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

Hyperbolic (Poincaré) Spaces

• $H_n = SO(1, n) / SO(n)$ coset.

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	●000	0000	000		O
Short i	ntroduction	n to Hyperk	olic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

- $H_n = SO(1, n) / SO(n)$ coset.
- Maximally symmetric.
- Constant negative curvature $R = -n(n-1)/L^2$
- Conformally flat $C_{\mu\nu\rho\sigma} = 0$.

Why 00	Preliminaries ●000	AdS Splitting	Stability 000	M5 branes	Conclusions ○
Short i	ntroduction	n to Hyperk	olic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

- $H_n = SO(1, n) / SO(n)$ coset.
- Maximally symmetric.
- Constant negative curvature $R = -n(n-1)/L^2$
- Conformally flat $C_{\mu\nu\rho\sigma} = 0$.

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	•000	0000	000		O
Short i	ntroduction	n to Hyperk	oolic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

- $H_n = SO(1, n) / SO(n)$ coset.
- Maximally symmetric.

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	•000	0000	000	000	O
Short i	ntroduction	n to Hyperk	olic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

- $H_n = SO(1, n) / SO(n)$ coset.
- Maximally symmetric.
- Constant negative curvature $R = -n(n-1)/L^2$
- Conformally flat $C_{\mu\nu\rho\sigma} = 0$.

Why 00	Preliminaries ●000	AdS Splitting	Stability 000	M5 branes	Conclusions ○
Short i	ntroduction	n to Hyperk	olic Mar	nifolds	

• A *n*-dimensional maximally symmetric space can be defined as a pseudosphere in *n* + 1 dimensions:

$$\epsilon_0(X^0)^2 + (X^1)^2 + \dots + (X^{n-1})^2 + \epsilon_n(X^n)^2 = \epsilon L^2$$

$$\begin{array}{c|c} (\epsilon_0, \epsilon_n, \epsilon) & --- & -++ & -+- & +++ \\ \hline \text{Space} & \text{AdS}_n & \text{dS}_n & H_n & S^n \end{array}$$

- $H_n = SO(1, n) / SO(n)$ coset.
- Maximally symmetric.
- Constant negative curvature $R = -n(n-1)/L^2$
- Conformally flat $C_{\mu\nu\rho\sigma} = 0$.

イロト イロト イヨト イヨト

Short	Introduct	ion to Hyp	erbolic N	lanifolds	
Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	○○●○	0000	000		O

H_n/Γ : no moduli

- Any finite closed manifold of constant negative curvature is *H_n*/Γ, Γ ⊂ *SO*(1, *n*)
- **Rigidity theorem**: the geometry of a finite manifold H_n/Γ is determined by its fundamental group [Mostow]
 - (Algebraic) Given T₁ and T₂, lattices in SO(1, n) such as H_n/T_i is finite-volume, then if they are isomorphic then they are conjugate.

(Geometric) If M and N are complete finite-volume

Short I	ntroductio	n to Hyper	holic Mar	aifolds	
Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions

H_n/Γ : no moduli

- Any finite closed manifold of constant negative curvature is *H_n*/Γ, Γ ⊂ *SO*(1, *n*)
- Rigidity theorem: the geometry of a finite manifold *H_n*/Γ is determined by its fundamental group [Mostow]
 - (Algebraic) Given Γ_1 and Γ_2 , lattices in SO(1, n) such as H_n/Γ_i is finite-volume, then if they are isomorphic then they are conjugate.
 - (Geometric) If *M* and *N* are complete finite-volume hyperbolic and there exist an isomorphism
 - $f : \pi_1(M) \to \pi_1(N)$, then *f* is induced by a *unique* isometry.

イロト イポト イヨト イヨト

Short	Introduct	ion to Hyp	erbolic N	lanifolds	
Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	○○●○	0000	000		○

H_n/Γ : no moduli

infoundation to myp

- Any finite closed manifold of constant negative curvature is H_n/Γ , $\Gamma \subset SO(1, n)$
- **Rigidity theorem**: the geometry of a finite manifold H_n/Γ is determined by its fundamental group [Mostow]
 - (Algebraic) Given Γ_1 and Γ_2 , lattices in SO(1, n) such as H_n/Γ_i is finite-volume, then if they are isomorphic then they are conjugate.

< ロト < 同ト < ヨト < ヨト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
	0000				
Char	L Introduct	ion to Urm	arhalia N	Innifolda	

Une manifuluitus

H_n/Γ : no moduli

- Any finite closed manifold of constant negative curvature is *H_n*/Γ, Γ ⊂ *SO*(1, *n*)
- Rigidity theorem: the geometry of a finite manifold H_n/Γ is determined by its fundamental group [Mostow]
 - (Algebraic) Given Γ_1 and Γ_2 , lattices in SO(1, n) such as H_n/Γ_i is finite-volume, then if they are isomorphic then they are conjugate.
 - (Geometric) If *M* and *N* are complete finite-volume hyperbolic and there exist an isomorphism
 - $f: \pi_1(M) \to \pi_1(N)$, then f is induced by a *unique* isometry.

• • • • • • • • • • • •

Short introduction to Hyperbolic Manifolds							
Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions		
00	000●	0000	000	000	○		

H_3/Γ

- Generalization of Riemann surfaces.
- Only lower bounds on the volume *V* > 0.166

2

イロト イポト イモト イモト

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O		
Short introduction to Hyperbolic Manifolds							

H_3/Γ

- Generalization of Riemann surfaces.
- Only lower bounds on the volume V > 0.166

2

<ロト < 四ト < 三ト < 三ト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00	○○○●	0000	000		0
Short i	ntroduction	n to Hyperl	polic Mar	nifolds	

JI

H_3/Γ

- Generalization of Riemann surfaces.
- Only lower bounds on the volume V > 0.166

Example: Seifert-Weber Manifold

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions		
00	○○○●	0000	000		O		
Short introduction to Hyperbolic Manifolds							

H_3/Γ

- Generalization of Riemann surfaces.
- Only lower bounds on the volume V > 0.166

Example: Weeks Manifold

Why 00	Preliminaries	AdS Splitting	Stability 000	M5 branes	Conclusions O
Outlin	ne				

- 1 Why are we here?
- 2 Preliminaries
- **3** The "AdS Splitting Series"
- ④ Stability
- **5** Source Brane Interpretation
- 6 Conclusions

伺 ト イヨ ト イヨ ト

Why 00	Preliminaries	AdS Splitting ●000	Stability 000	M5 branes	Conclusions O
M-theo					

Action and Notation

- Ansatz: direct products of symmetric spaces $M_{11} = M_0 \times M_1 \times M_2 \times ...$
- Split the Ricci tensor in blocks

$$R^{\mu}_{\nu}\big|_i = k_i \,\delta^{\mu}_{\nu}\big|_i$$

• Choose the gauge fields as:

$$F_I = Q_I \omega_I$$

where
$$\omega_I = \bigwedge_{i \in I} \omega_i$$
.

・ 同 ト ・ ヨ ト ・ ヨ

Why 00	Preliminaries	AdS Splitting 0●00	Stability 000	M5 branes	Conclusions ○	
Equations of motion						

Algebraic System

• The equation of motion are an algebraic system for *k_i*:

$$2k_i - R = -\sum_I \varepsilon_I(i) \varepsilon_I(0) Q_I^2$$
, for $i = 0, 1, 2, ...,$

where $R = \sum_{i} d_{i}k_{i}$ is the total Ricci scalar and

$$\varepsilon_I(i) = \begin{cases} +1 & \text{if } i \in I, \\ -1 & \text{otherwise.} \end{cases}$$

• Negative values for *k_i* are possible due to the stress-energy tensor coming from fields living in other subspaces.

• Only negative contribution on M₀: no-go for de Sitter.

イロト イポト イヨト イヨト

Why 00	Preliminaries	AdS Splitting 0●00	Stability 000	M5 branes	Conclusions ○	
Equations of motion						

Algebraic System

• The equation of motion are an algebraic system for *k_i*:

$$2k_i - R = -\sum_I \varepsilon_I(i) \varepsilon_I(0) Q_I^2$$
, for $i = 0, 1, 2, ...,$

where $R = \sum_{i} d_{i}k_{i}$ is the total Ricci scalar and

$$arepsilon_I(i) = egin{cases} +1 & ext{if } i \in I, \ -1 & ext{otherwise}. \end{cases}$$

• Negative values for *k_i* are possible due to the stress-energy tensor coming from fields living in other subspaces.

Only negative contribution on M_0 : no-go for de Sitter

イロト イポト イヨト イヨト

Why 00	Preliminaries	AdS Splitting ○●○○	Stability 000	M5 branes	Conclusions O	
Equations of motion						

Algebraic System

• The equation of motion are an algebraic system for *k_i*:

$$2k_i - R = -\sum_I \varepsilon_I(i) \varepsilon_I(0) Q_I^2$$
, for $i = 0, 1, 2, ...,$

where $R = \sum_{i} d_{i}k_{i}$ is the total Ricci scalar and

$$arepsilon_I(i) = egin{cases} +1 & ext{if } i \in I, \ -1 & ext{otherwise.} \end{cases}$$

- Negative values for *k_i* are possible due to the stress-energy tensor coming from fields living in other subspaces.
- Only negative contribution on *M*₀: no-go for de Sitter.

Why 00	Preliminaries	AdS Splitting 00●0	Stability 000	M5 branes	Conclusions O	
Splitting Series Solution						

AdS Splitting

- We consider Cartesian products
- The Ricci tensor has a block matrix form
- If each block is a symmetric space there is a fixed choice for the curvatures where AdS₇ is not distinguishable from AdS_d × H_{7-d}

$AdS_7 \rightarrow AdS_d \times H_{7-d}$

• Starting from the well known AdS₇ × S⁴ one gets:

 $\mathrm{AdS}_4 imes H_3 imes S^4$

く 伺 とう きょう く きょう
Why 00	Preliminaries	AdS Splitting 00●0	Stability 000	M5 branes	Conclusions O
Split	ting Series	Solution			

AdS Splitting

- We consider Cartesian products
- The Ricci tensor has a block matrix form
- If each block is a symmetric space there is a fixed choice for the curvatures where AdS₇ is not distinguishable from AdS_d × H_{7-d}

 $AdS_7 \rightarrow AdS_d \times H_{7-d}$

• Starting from the well known $AdS_7 \times S^4$ one gets:

 $\mathrm{AdS}_4 \times H_3 \times S^4$

▲御▶ ▲ 国▶ ▲ 国♪

Why 00	Preliminaries	AdS Splitting 00●0	Stability 000	M5 branes	Conclusions O
Split	ting Series	Solution			

AdS Splitting

- We consider Cartesian products
- The Ricci tensor has a block matrix form
- If each block is a symmetric space there is a fixed choice for the curvatures where AdS_7 is not distinguishable from $AdS_d \times H_{7-d}$

$AdS_7 \rightarrow AdS_d \times H_{7-d}$

• Starting from the well known $AdS_7 \times S^4$ one gets:

 $\mathrm{AdS}_4 \times H_3 \times S^4$

< 回 > < 三 > < 三 >

Why 00	Preliminaries	AdS Splitting 00●0	Stability 000	M5 branes	Conclusions O
Splitt	ing Series	Solution			

AdS Splitting

- We consider Cartesian products
- The Ricci tensor has a block matrix form
- If each block is a symmetric space there is a fixed choice for the curvatures where AdS_7 is not distinguishable from $AdS_d \times H_{7-d}$

$$AdS_7 \rightarrow AdS_d \times H_{7-d}$$

• Starting from the well known $AdS_7 \times S^4$ one gets:

$$AdS_4 \times H_3 \times S^4$$

• If *n* is even there is one Killing spinor in SO(1, n - 1)

- To preserve it, $\Gamma \subset SO(1, n 3)$.
- H_n/Γ would remain infinite
- No supersymmetric compactifications for *n* even

• If *n* is odd there are two Killing spinors in SO(1, n-1)

< ロト < 同ト < ヨト < ヨト

• If *n* is even there is one Killing spinor in SO(1, n - 1)

- To preserve it, $\Gamma \subset SO(1, n-3)$.
- H_n/Γ would remain infinite
- No supersymmetric compactifications for *n* even

• If *n* is odd there are two Killing spinors in SO(1, n - 1)

< ロト < 同ト < ヨト < ヨト

• If *n* is even there is one Killing spinor in SO(1, n - 1)

- To preserve it, $\Gamma \subset SO(1, n-3)$.
- H_n/Γ would remain infinite
- No supersymmetric compactifications for *n* even

• If *n* is odd there are two Killing spinors in SO(1, n-1)

- If *n* is even there is one Killing spinor in SO(1, n 1)
 - To preserve it, $\Gamma \subset SO(1, n-3)$.
 - H_n/Γ would remain infinite
 - No supersymmetric compactifications for *n* even

If *n* is odd there are two Killing spinors in SO(1, n - 1)

- If *n* is even there is one Killing spinor in SO(1, n 1)
 - To preserve it, $\Gamma \subset SO(1, n-3)$.
 - H_n/Γ would remain infinite
 - No supersymmetric compactifications for *n* even
- If *n* is odd there are two Killing spinors in SO(1, n 1)
 - If Γ ⊂ SO(1, n − 1) half supersymmetry can be preserved
 No known examples

< ロ > < 同 > < 回 > < 回 > < 回 >

- If *n* is even there is one Killing spinor in SO(1, n 1)
 - To preserve it, $\Gamma \subset SO(1, n-3)$.
 - H_n/Γ would remain infinite
 - No supersymmetric compactifications for *n* even
- If *n* is odd there are two Killing spinors in SO(1, n 1)
 - If $\Gamma \subset SO(1, n 1)$ half supersymmetry can be preserved
 - No known examples

< ロ > < 同 > < 回 > < 回 > < 回 >

- If *n* is even there is one Killing spinor in SO(1, n 1)
 - To preserve it, $\Gamma \subset SO(1, n-3)$.
 - H_n/Γ would remain infinite
 - No supersymmetric compactifications for *n* even
- If *n* is odd there are two Killing spinors in SO(1, n 1)
 - If $\Gamma \subset SO(1, n 1)$ half supersymmetry can be preserved
 - No known examples

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlin	ie				

- 1 Why are we here?
- 2 Preliminaries
- **3** The "AdS Splitting Series"
- **4** Stability
 - **5** Source Brane Interpretation
- 6 Conclusions

伺 ト イヨ ト イヨ ト

Why 00	Preliminaries	AdS Splitting 0000	Stability ●○○	M5 branes	Conclusions O
Stabi	lity				

- No protection from supersymmetry. We can check at least the stability against scalar modes.
- Turn on dilatation of the compact subspaces
- Write the effective, dimensionally-reduced action
- Check the masses for the scalar fields against the Breitenlohner-Freedman bound
- In the AdS-splitting case there are no tachyons.

Why 00	Preliminaries	AdS Splitting 0000	Stability ●○○	M5 branes	Conclusions O
Stabi	lity				

- No protection from supersymmetry. We can check at least the stability against scalar modes.
- Turn on dilatation of the compact subspaces
- Write the effective, dimensionally-reduced action
- Check the masses for the scalar fields against the Breitenlohner-Freedman bound
- In the AdS-splitting case there are no tachyons.

Why 00	Preliminaries	AdS Splitting 0000	Stability ●00	M5 branes	Conclusions O
Stabi	lity				

- No protection from supersymmetry. We can check at least the stability against scalar modes.
- Turn on dilatation of the compact subspaces
- Write the effective, dimensionally-reduced action
- Check the masses for the scalar fields against the Breitenlohner-Freedman bound
- In the AdS-splitting case there are no tachyons.

Why 00	Preliminaries	AdS Splitting 0000	Stability ●00	M5 branes	Conclusions O
Stabi	lity				

- No protection from supersymmetry. We can check at least the stability against scalar modes.
- Turn on dilatation of the compact subspaces
- Write the effective, dimensionally-reduced action
- Check the masses for the scalar fields against the Breitenlohner-Freedman bound
- In the AdS-splitting case there are no tachyons.

Why 00	Preliminaries	AdS Splitting 0000	Stability ●00	M5 branes	Conclusions O
Stabi	lity				

- No protection from supersymmetry. We can check at least the stability against scalar modes.
- Turn on dilatation of the compact subspaces
- Write the effective, dimensionally-reduced action
- Check the masses for the scalar fields against the Breitenlohner-Freedman bound
- In the AdS-splitting case there are no tachyons.

Why 00	Preliminaries	AdS Splitting 0000	Stability ○●○	M5 branes	Conclusions O
Stabili	ity				

Effective action

$$S \sim \int \mathrm{d}^d x \, \sqrt{-g^{(d)}} \left[R^{(d)} - \frac{1}{2} \partial_\mu \Phi_i \partial^\mu \Phi_i - \bar{V}(\Phi)
ight]$$

- Φ_1 is the overall volume
- Φ_2 is the ratio between the two volumes
- The effective potential is

 $\bar{V}(\Phi) = e^{-2(d_1\varphi_1 + d_2\varphi_2)/(d-2)} \times \\ \times \left(-e^{-2\varphi_1(x)} P^{(1)} - e^{-2\varphi_2(x)} P^{(2)} \right)$

э

イロト イポト イヨト イヨト

Why 00	Preliminaries	AdS Splitting 0000	Stability ○●○	M5 branes	Conclusions O
Stabili	ity				

Effective action

$$S \sim \int \mathrm{d}^d x \, \sqrt{-g^{(d)}} \left[R^{(d)} - \frac{1}{2} \partial_\mu \Phi_i \partial^\mu \Phi_i - \bar{V}(\Phi) \right]$$

• Φ₁ is the overall volume

- Φ_2 is the ratio between the two volumes
- The effective potential is

$$\bar{V}(\Phi) = e^{-2(d_1\varphi_1 + d_2\varphi_2)/(d-2)} \times \\ \times \left(-e^{-2\varphi_1(x)} R^{(1)} - e^{-2\varphi_2(x)} R^{(2)} + V(\varphi_1, \varphi_2) \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Why 00	Preliminaries	AdS Splitting 0000	Stability ○●○	M5 branes	Conclusions O
Stabili	ity				

Effective action

$$S \sim \int \mathrm{d}^d x \, \sqrt{-g^{(d)}} \left[R^{(d)} - \frac{1}{2} \partial_\mu \Phi_i \partial^\mu \Phi_i - \bar{V}(\Phi) \right]$$

- Φ_1 is the overall volume
- Φ₂ is the ratio between the two volumes
- The effective potential is

$$\bar{V}(\Phi) = e^{-2(d_1\varphi_1 + d_2\varphi_2)/(d-2)} \times \\ \times \left(-e^{-2\varphi_1(x)} R^{(1)} - e^{-2\varphi_2(x)} R^{(2)} + V(\varphi_1, \varphi_2) \right)$$

(4 回) (ヨ) (ヨ)

Why 00	Preliminaries	AdS Splitting 0000	Stability ○●○	M5 branes	Conclusions O
Stabili	ty				

Effective action

$$S \sim \int \mathrm{d}^d x \, \sqrt{-g^{(d)}} \left[R^{(d)} - \frac{1}{2} \partial_\mu \Phi_i \partial^\mu \Phi_i - \bar{V}(\Phi) \right]$$

- Φ_1 is the overall volume
- Φ₂ is the ratio between the two volumes
- The effective potential is

$$\bar{V}(\Phi) = e^{-2(d_1\varphi_1 + d_2\varphi_2)/(d-2)} \times \left(-e^{-2\varphi_1(x)}R^{(1)} - e^{-2\varphi_2(x)}R^{(2)} + V(\varphi_1, \varphi_2) \right)$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

8

Why 00	Preliminaries	AdS Splitting 0000	Stability ○○●	M5 branes	Conclusions O
Stabi	lity				

Four-dimensional Action for $AdS_4 \times H_3 \times S^4$

- Consider $AdS_4 \times H_3 \times S^4$.
- The stability is encoded in the Hessian matrix.
- The potential has a minimum

くぼう くほう くほう

Why 00	Preliminaries	AdS Splitting 0000	Stability ○○●	M5 branes	Conclusions O
Stabi	lity				

Four-dimensional Action for $AdS_4 \times H_3 \times S^4$

- Consider $AdS_4 \times H_3 \times S^4$.
- The stability is encoded in the Hessian matrix.
- The potential has a minimum

A (1) > A (1) > A

Why 00	Preliminaries	AdS Splitting 0000	Stability ○○●	M5 branes	Conclusions O
Stabil	ity				

Four-dimensional Action for $AdS_4 \times H_3 \times S^4$

- Consider $AdS_4 \times H_3 \times S^4$.
- The stability is encoded in the Hessian matrix.
- The potential has a minimum

▶ < ∃ >

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlin	ie				

- 1 Why are we here?
- 2 Preliminaries
- **3** The "AdS Splitting Series"
- ④ Stability
- **5** Source Brane Interpretation
- **6** Conclusions

伺 ト イヨ ト イヨ ト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	●○○	O
Branes	5				

- Alternative description in terms of M-branes wrapping the hyperbolic space
- The stability of the AdS × *H* × *S* backgrounds results from the presence of two competing effects:
 - The tension given by the M-brane trying to shrink the internal manifold
 - The pressure due to the negative curvature that tends to blow the hyperbolic part.
- Only one magnetic charge. Back-reaction of an M5-brane

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	●○○	O
Branes	5				

- Alternative description in terms of M-branes wrapping the hyperbolic space
- The stability of the AdS × *H* × *S* backgrounds results from the presence of two competing effects:
 - The tension given by the M-brane trying to shrink the internal manifold
 - The **pressure** due to the negative curvature that tends to blow the hyperbolic part.

• Only one magnetic charge. Back-reaction of an M5-brane

イロト イポト イヨト イヨ

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	●○○	O
Branes	5				

- Alternative description in terms of M-branes wrapping the hyperbolic space
- The stability of the AdS × *H* × *S* backgrounds results from the presence of two competing effects:
 - The tension given by the M-brane trying to shrink the internal manifold
 - The **pressure** due to the negative curvature that tends to blow the hyperbolic part.
- Only one magnetic charge. Back-reaction of an M5-brane

イロト イポト イヨト イヨ

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	●○○	O
Branes	5				

- Alternative description in terms of M-branes wrapping the hyperbolic space
- The stability of the AdS × *H* × *S* backgrounds results from the presence of two competing effects:
 - The tension given by the M-brane trying to shrink the internal manifold
 - The pressure due to the negative curvature that tends to blow the hyperbolic part.

• Only one magnetic charge. Back-reaction of an M5-brane

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	●○○	O
Branes	5				

- Alternative description in terms of M-branes wrapping the hyperbolic space
- The stability of the AdS × *H* × *S* backgrounds results from the presence of two competing effects:
 - The tension given by the M-brane trying to shrink the internal manifold
 - The pressure due to the negative curvature that tends to blow the hyperbolic part.
- Only one magnetic charge. Back-reaction of an M5-brane

• • • • • • • • • • • •

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	○●○	O
M5 b	rane				

M5-brane Ansatz

- M5 brane wrapping a *H*₃ hyperbolic manifold
- Most simple ansatz, preserving $SO(1,2) \times SO(4) \times SO(1,3)$

$$ds^{2} = e^{2\varphi_{1}(r)} \left(-dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} \right) + e^{2\varphi_{2}(r)} \left(dr^{2} + r^{2} d\Omega_{4}^{2} \right) + e^{2\varphi_{3}(r)} \left(\frac{dx_{8}^{2} + dx_{9}^{2} + dx_{10}^{2}}{r^{2}} \right)$$

イロト イポト イモト イモト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	⊙●⊙	O
M5 br	ane				

M5-brane Ansatz

- M5 brane wrapping a *H*₃ hyperbolic manifold
- Most simple ansatz, preserving $SO(1,2) \times SO(4) \times SO(1,3)$

$$ds^{2} = e^{2\varphi_{1}(r)} \left(-dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} \right) + e^{2\varphi_{2}(r)} \left(dr^{2} + r^{2} d\Omega_{4}^{2} \right) + e^{2\varphi_{3}(r)} \left(\frac{dx_{8}^{2} + dx_{9}^{2} + dx_{10}^{2}}{x_{8}^{2}} \right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions	
00		0000	000	○○●	O	
M5 brane						

Numerical Solution

• The system can be solved numerically

• Small-*r* regime: $AdS_4 \times S^4 \times H_3$ solution

- $\varphi_1(r) \sim \log r$ $\varphi_2(r) \sim -\log r$ $\varphi_3(r) = \text{const}$
- Asymptotically flat

$$\varphi_1(r) \sim -r^2 \qquad \qquad \varphi_2(r) \sim r^2 \qquad \qquad \varphi_3(r) \sim r^2$$

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	○○●	O
M5 b	orane				

Numerical Solution

• The system can be solved numerically

• Small-*r* regime: $AdS_4 \times S^4 \times H_3$ solution

- $\varphi_1(r) \sim \log r$ $\varphi_2(r) \sim -\log r$ $\varphi_3(r) = \text{const.}$
- Asymptotically flat

Why	Preliminaries	AdS Splitting	Stability	M5 branes	Conclusions
00		0000	000	○○●	O
M5 b	rane				

Numerical Solution

• The system can be solved numerically

• Small-*r* regime: $AdS_4 \times S^4 \times H_3$ solution

$$\varphi_1(r) \sim \log r$$
 $\varphi_2(r) \sim -\log r$ $\varphi_3(r) = \text{const.}$

• Asymptotically flat

$$\varphi_1(r) \sim -r^2$$
 $\varphi_2(r) \sim r^2$ $\varphi_3(r) \sim r^2$

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions O
Outlin	ie				

- 1 Why are we here?
- 2 Preliminaries
- **3** The "AdS Splitting Series"
- ④ Stability
- **5** Source Brane Interpretation
- **6** Conclusions

伺 ト イヨ ト イヨ ト

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •			
What Did We See?								

Main results

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

to boldly go...

- Do supersymmetric compactifications existi?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •				
What	What Did We See?								

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist??
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •				
What	What Did We See?								

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- O supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •				
What	What Did We See?								

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •			
What I	What Did We See?							

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories
- Cosmological applications

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •
What I	Did We See	e?			

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •
What I	Did We See	e?			

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •			
What I	What Did We See?							

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

to boldly go...

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Cosmological applications

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •
What I	Did We See	e?			

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories

Why 00	Preliminaries	AdS Splitting 0000	Stability 000	M5 branes	Conclusions •			
What	What Did We See?							

- Hyperbolic space solutions in M-theory
- AdS-splitting
- Hyperbolic solution stable with respect to small perturbations even without supersymmetry
- M5-brane wrapped around an H₃ manifold

- Do supersymmetric compactifications exist?
- Closed form solution? Phase space?
- Type II solutions
- Dual theories
- Cosmological applications