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Important operators in four-dimensional gauge 
theory are the ‘t Hooft and Wilson line 

operators – which are supported on curves in 
spacetime:



They are important, for example, as order 
parameters for probing confinement and the 

Higgs mechanism.

I’ve been working with Sergei Gukov on 
analogous operators in gauge theory that are 
supported in codimension two, that is (in four 
dimensions) on a two-dimensional surface.

One primary motivation, which is the basis for 
our forthcoming paper, 



has to do with extending the approach to 
the “geometric Langlands program” via 
gauge theory – which was developed 

recently
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There is another possible motivation involving 
trying to understand in gauge theory some new 
knot invariants discovered by mathematicians

(Khovanov, ...; Gukov, Schwarz, Vafa)

These new invariants somehow generalize the 
knot invariants related to three-dimensional 

Chern-Simons gauge theory.  We feel that they 
should have a gauge theory description, which 
may involve surface operators – but we have 

not understood it yet.  (Gukov may explain 
something about this on Friday.)



A third motivation (thanks here to N. Seiberg
for helpful remarks) is that, like ‘t Hooft and 

Wilson operators, the surface operators might 
conceivably have applications as probes in 

understanding the dynamics of four-
dimensional gauge theory.

However, not much has happened in this 
direction yet, though I will say a few words 

later.



Surface operators could appear physically if 
cosmic strings are discovered. Depending on 

the microscopic details, the coupling to QCD of 
the world-volume of a cosmic string might give 

us an interesting surface operator probing 
QCD.

For example, there might be colored fields 
living only on the surface.



That is one prototype for what a surface 
operator might mean physically. 

We get another prototype if we imagine that 
the string is a sort of magnetic flux line with 

color magnetic flux as well as ordinary 
magnetic flux.  Then a quark circling the string

experiences a color-dependent Aharonov-
Bohm effect.



In either of these cases, we get a surface 
operator coupled to QCD if the string is so 

heavy that its motion can be considered fixed 
and known.  The problem is to determine the 

behavior of QCD in the presence of this kind of 
impurity.

Sometimes, the same cosmic string can be 
described (in its influence on QCD) in either of 

these two approaches.



In our work, we found the “Aharonov-Bohm”
approach to be more useful.   This means 
that we characterize our surface operator by 
the singularity it produces in the gauge 
fields around it.    The simplest picture is 
that this singularity is simply a monodromy.

So we pick a conjugacy class in G, 
represented by a group element U, and we 
say that the monodromy of the surface 
operator around the string must be 
conjugate to U.



In this way, we define a surface operator that 
depends on the choice of a conjugacy class in 

G.

It can also be conveniently described in 
formulas.  Locally, we pick coordinates



so that the string is located at 

And then, setting

we ask that the gauge field, near
should look like 

(where the dots refer to less singular terms)
and      is some chosen element of the Lie 

algebra.



We choose         so that the resulting 
monodromy, which is

is in the desired conjugacy class.  So we 
can specify our surface operator by talking 
about the monodromy, or by specifying the 
singular part of the gauge field A.



Up to a gauge transformation, we can 
assume that U lives in the maximal torus T 
of G … or more or less equivalently that 

takes values in the abelian Lie 
algebra of the torus.   Let us assume 
moreover that U is chosen generically, so 
that the subgroup of G that commutes with 
U is precisely equal to T.   It is also 
interesting to consider what happens for 
non-generic choices of U, but for today we 
will omit this.



What happens now is that we can define 
more parameters that the surface operator 
depends on.   The reason is that along the 
surface

the gauge group G is explicitly broken to the 
abelian subgroup T by the choice of U or



So we are in a situation that is a little like 
abelian gauge theory in two dimensions.  
In two-dimensional abelian gauge theory, 
we can introduce a “theta angle”, but I am 
going to call it        to avoid confusion with 
the “bulk” four-dimensional theta angle.

If the gauge group is just U(1), we would 
include in the integrand of the path integral 
a factor

Here D is a surface with gauge field strength 
F.  I normalized         to be defined mod 1.



How do we generalize this to any G?  On D,
we have a T-bundle, which is classified 

topologically by picking a U(1) bundle over 
D of “degree 1”, and then mapping it to T
by a homomorphism

So the bundles are classified by



And consequently we can usefully think of
the theta-like angles         as an element of

is a torus, but to understand better 
which torus, we need to review electric-
magnetic duality.



Let us recall the basic idea of such duality.  
For every gauge group        , there is a 
“dual group” ,
which physicists call the GNO dual and 
mathematicians call the Langlands dual 
group.  The basic relation among them is 
that electric charge of       is magnetic 
charge of       , and vice-versa.



We write         for the maximal torus of
and           for the maximal torus of

Electric charge of     is a representation of 
(i.e. every representation of     has a highest
weight, which is a representation of    ).

So electric charge lives in



Where does magnetic charge live?  
Magnetic charge can be measured by the 
magnetic flux through a large two-sphere 
at infinity, and I already told you that in 
general the magnetic flux through a two-
manifold D is classified by



To put the two side by side, therefore, 
electric and magnetic charge take values
respectively in 

and



Electric-magnetic duality is supposed to 
exchange        with        while also 
exchanging E and M.  So looking back to 
the definitions of E and M, we find the 
fundamental relation between      and     :

This means that       and       are “dual tori”



Going back to the theta angles of the 
surface operator or “cosmic string”, we 
found that they take values in

where we now say

which is dual to the previous definition



This probably sounds a little abstract, but it 
actually just means that the mysterious 
torus where the two-dimensional theta 
angles live is none other than 

Here I am using “Pontryagin duality,” which 
says that if 

then



In other words, since

it follows that                                                 

is none other than



Now, hoping not to have lost you in the 
technicalities, what we have learned is that

the surface operator

is characterized by two types of 
variables… takes values in     
and        takes values in             .



All this makes sense without any 
assumption of electric-magnetic duality.  
The dual torus was introduced just to give 
a convenient description of the mysterious 
torus W where the theta-like angles live.

However, it becomes more interesting if we 
do assume electric-magnetic duality – the 
prime case being N=4 super Yang-Mills 
theory in four dimensions.



In this case, we have the electric-magnetic 
duality transformation

that exchanges the group       with the dual 
group       and likewise the torus with 
the dual torus

In this theory, our construction gives a 
surface operator that is “1/2 BPS,” i.e. it 
preserves half the supersymmetry



It depends on the variables       and
(and on some other variables that specify 

the singular behavior of the scalar fields 
near the surface … these other variables 
will not concern us today, though they are 
important in the geometric Langlands
program).

Under S-duality it must somehow map to 
another surface operator.



Since the variables are 

where S exchanges the two factors on the 
right, the obvious hypothesis is that S acts 
by

(The minus sign is to agree with known 
action of   S2, which is charge 
conjugation.)



This has been the basic hypothesis in the 
work that Gukov and I have been doing on 
the ramified case of the geometric 
Langlands correspondence, and it seems 
to work very nicely.    In that context, one 
studies N=4 super Yang-Mills on a four-
manifold                               where      is 
the Riemann surface on which one want to 
study geometric Langlands.   At low 
energies, with       large compared to      , 
one gets a two-dimensional (4,4) sigma 



model on      with target a hyper-Kahler
manifold that parameterizes gauge fields 
and scalar fields on C.    

As Kapustin and I showed, the geometric 
Langlands program is all about what S-
duality does in this sigma model, and how 
it acts on Wilson and ‘t Hooft operators.

To get to the “ramified case,” Gukov and I 
have merely considered the same 
construction …



but now with the addition of a “surface 
operator” supported on

where    is a point in  

When we apply standard physical 
understanding of S-duality (enriched by 
the proposal I explained for how it acts on 
the parameters of the surface operator) we 
get the ramified extension of the geometric 
Langlands program, as understood by 
mathematicians.



How would we try to use these operators as 
order parameters for probing gauge 
theories?   I don’t know if we can get 
anything useful, but the obvious idea is to
pick some values of      and      and then 
consider a surface operator with those 
parameters that is supported on a closed 
two-manifold, for example a two-sphere,

with area A and enclosing a 
volume V.



Then, imitating what is usually done for 
Wilson and ‘t Hooft operators, we ask if 
the expectation value of such an operator 
behaves for large A and V as

exp(- f  A)     or as      exp(-f V)

for some “constant” f – which one would 
expect to depend on The range of

for which one gets an area or 
volume law might distinguish different 
phases of gauge theory. 



For most purposes, such new order 
parameters do not really seem to be 
needed (since Wilson and ‘t Hooft
operators are adequate), but there are 
some known situations in which four 
dimensional gauge theories appear to 
have distinct phases that are hard to 
distinguish using the standard order 
parameters. (For example, N=1 Super 
Yang-Mills with adjoint matter and a 
general single-trace superpotential.)



The only cases in which I can offer any 
computation to show if a surface operator

has an area or volume law are rather trivial.

Conformal invariance makes a volume law 
impossible, so we will not get a volume 
law in N=4 super YM in the vacuum in 
which the scalar fields vanish.  Even if we 
give VeV’s to scalars, the low energy 
theory is just a conformally invariant 
abelian N=4 theory – no volume law.



To find a volume law, it suffices to consider 
the Higgs phase of for example U(1) 
gauge theory.   In the Higgs phase, to 
minimize the action, the Higgs field       
must be covariantly constant,  

If        is nonzero, then this is only possible
if                 along a 

“domain wall” that ends on the
“string worldvolume.” So
there is a volume law for               



And I believe there is an area rather than 
volume law for                 

By duality, we seem to learn that in the 
confining phase, there is a volume law 
unless                       

I don’t think I have any intuition about this.



Now let us look at the duality conjecture 
more closely.  As I described it, we had 
the transformation                              
acting by                                 

However, actually,        is part of an infinite
discrete symmetry group that roughly 

speaking is                           To be precise, 
the duality group is exactly                    

essentially only for the case of



For the case of        , the action of the duality 
group on                is (we believe)

for any element



For                               ,  this formula gives

the transformation that I suggested before,
and for the other generator

it gives

This last one can be demonstrated explicitly, 
similarly to computing the electric charge



of a magnetic monopole.   

The idea is that the transformation

is the same as   

where     is the four-dimensional theta 
angle, appearing in 



Usually                      is a symmetry because

is integer-valued, so under             
the action shifts by an integer multiple of

But once we introduce the singularity with
it is no longer true that      is an integer. It 
differs from one by                         



The result of this is that by itself
is not a symmetry.  It changes the action by

To get a symmetry, one must also shift the 
two-dimensional theta

angle            , which appears in a term in 
the action                                 

Indeed,                             must be 
accompanied by



So this explains the action of T.

Once the action of T is pinned down, the 
proposal for the action of S is (we think) 
the only reasonable ansatz for the action 
of SL(2,Z) on                    

A further bit of evidence in its favor is that for 
G=U(1), one can explicitly compute that the 

parameters transform as claimed.



I think I’ve said enough about surface 
operators in gauge theory, so to the extent 
that there is any time left, I am going to 
use it to say a few words on “what is the 
geometric Langlands program,” for 
whatever cultural value the answer to this 
question may have.



The Langlands program is an attempt 
to unify many old and new results in 
number theory 
– ranging from quadratic reciprocity, 
proved around 1800,  to the modern 
proof of Fermat’s Last Theorem.

Number theory is difficult because 
calculus is powerful ….



And so mathematicians have sought to find 
geometric analogs of problems in number 
theory.

Number field --- Riemann surface  C

Prime number --- point on C

The Langlands program, too, has a 
geometric analog, which has been 
intensively developed.



Even in its geometric form, the Langlands
program involves statements that at first 
sight are likely to look unrecognizable to 
physicists.

But, if one probes a little more deeply, the 
Langlands program has many obvious and 
less obvious analogies with quantum field 
theory.



For one thing, Langlands introduced (ca. 
1970) a “duality” between a simple Lie
group G and a “dual” group often called
LG.  However, this relationship, which 
pairs SU(N) with SU(N)/ZN, E8 with itself, 
SO(2n+1) with Sp(n), etc., also plays a 
very distinguished role in four-dimensional
gauge theory…



In fact, the Langlands dual group LG is 
precisely the magnetic group introduced in 
1976 by Goddard, Nuyts, and Olive to 
classify magnetic monopoles:

Their idea was that if electric charges are 
classified by representations of a group G, 
then the corresponding magnetic charges 
are classified by a representation of the 
dual group, which in fact coincides with the 
dual LG of Langlands.



The GNO work was of course the jumping 
off point for Montonen-Olive duality, an 
extremely fruitful idea in which the two 
groups G and LG enter in a completely 
symmetric fashion.

By contrast, in the Langlands program the 
roles of G and LG are at first sight 
bafflingly unlike.  An object of one type 
associated with LG is classified by a 
completely different type of object 
associated with G.



That is a bit disconcerting at first sight, 
but on the positive side, the objects of 
study on the two sides are both 
objects that are familiar in QFT – or at 
least they are once we make the 
translation from number theory to 
geometry.



On the left hand side of the Langlands
correspondence, we have a flat 
connection, on a Riemann surface C, 
with gauge group LG.  In gauge 
theory, flat connections are those with 
least energy, most supersymmetry, 
etc.



The right hand side of the Langlands
correspondence involves an 
“automorphic representation” of G, a 
notion which when suitably translated 
to geometry is very closely related to 
the “conformal blocks” of current 
algebra, with symmetry group G, on a 
Riemann surface C.



Moreover, in recent years 
mathematicians (Beilinson, Drinfeld, 
Frenkel, Gaitsgory…) working on 
geometric Langlands have relied 
heavily on two-dimensional current 
algebra – albeit with a focus on 
aspects (such as the exceptional 
behavior at level k=-h) that appear 
extremely exotic from a physical point 
of view.



As I already mentioned, A. Kapustin and I
recently described geometric Langlands in 

terms of gauge theory (and S. Gukov and 
I have been extending this to the “ramified 
case”)



To simplify a bit, our analysis is based on six 
ideas:

(1) A certain twisting of N=4 super Yang-Mills 
theory gives a family of TQFT’s parameterized 
by CP1.  S-duality acts on this CP1

(2) If this theory is compactified to two dimensions 
on a Riemann surface C, one gets a sigma 
model whose target is “Hitchin’s moduli
space”; S-duality turns into, roughly speaking, 
mirror symmetry of the sigma model.



(3) Wilson and ‘t Hooft operators of the four-
dimensional gauge theory can be 
interpreted as operators on branes – that 
is operators that act a brane to give a new
brane (as opposed to conventional 
operators acting on quantum states

As a result, we can define a new notion of
“electric eigenbrane” (eigenbrane of Wilson 

operators) or “magnetic eigenbrane”
(eigenbrane of ‘t Hooft operators)



(4) The electric eigenbranes correspond to 
representations of the fundamental group 
in LG.  This is the left hand side of the 
geometric Langlands correspondence.



(5) S-duality will transform electric 
eigenbranes into magnetic eigenbranes
….and it turns out that the magnetic
eigenbranes are what are called
“Hecke eigensheaves” in the jargon

(6) Finally, another trick involving branes
enables us to interpret the “magnetic
eigenbranes” as the “D-modules” that 
appear on the right hand side of the 
geometric Langlands program.



(1) A certain twisting of N=4 super Yang-
Mills theory gives a family of TQFT’s
parameterized by CP1.  S-duality acts on 
this CP1

I think I will not explain this today as the 
basic idea of “twisting” a supersymmetric
field theory to get a TQFT is fairly well 
known.  We just apply this procedure to 
N=4.  There are a few unusual features 
but we needn’t explain them today.



(2) If this theory is compactified to two 
dimensions on a Riemann surface C, one 
gets a sigma model whose target is 
“Hitchin’s moduli space”; S-duality turns 
into, roughly speaking, mirror symmetry of 
the sigma model.

This step largely follows BJSV and HMS 
(1995).  We take the four-manifold 
M4  to be a product of Riemann surfaces Σ
and C.  In the limit that Σ is very large 
compared to C, we get an effective two 
dimensional σ-model on Σ.



Our four-dimensional topological field theory 
reduces in two dimensions essentially to a 
familiar type of A- or B-model of the sigma 
model (or a hybrid made possible by the 
fact that in this case the target is hyper-
Kahler). 

In one of the complex structures, the S-
duality reduces essentially to a mirror 
symmetry.



Our four-dimensional topological field theory 
reduces in two dimensions essentially to a 
familiar type of A- or B-model of the sigma 
model (or a hybrid made possible by the 
fact that in this case the target is hyper-
Kahler). 

In one of the complex structures, the S-
duality reduces essentially to a mirror 
symmetry.



To summarize the remaining points (3)-(6):

In the twisted N=2 super Yang-Mills (which 
is related to Donaldson theory of four-
manifolds), the important operators are 
local operators and their “descendants,”
but in the present problem…



The important operators are not local 
operators, but rather Wilson and ‘t Hooft
“line operators”

S

associated with an open or closed loop S in 
spacetime.



The important objects that the line operators 
act on are “branes.”

The branes are defined in the four-
dimensional gauge theory by local 
boundary conditions at the boundary of the 
four-manifold M.

In two dimensions, they reduce to the 
ordinary branes of the sigma model, 
including the usual A-branes and B-branes
of the appropriate topological field 
theories.



Now the key fact is that line operators 
behave as operators acting on 

branes… A brane (the solid line)
with a line operator (the dashed line)
gives us a new “composite” brane.

This gives an action of line operators
on “theories,” more abstract than the 
usual action of operators on states.



If L is a line operator and B is a brane, we 
say that B is an “eigenbrane” of L if L 
acting on B gives us back several copies 
of B.

In formulas

where V is a vector space.



We call a brane that is an eigenbrane for the 
Wilson operators an electric eigenbrane, 
and a brane that is an eigenbrane for the ‘t 
Hooft operators a magnetic eigenbrane.

Obvious, S-duality will map electric 
eigenbranes to magnetic eigenbranes.

With a little effort, one shows that electric 
eigenbranes are classified by 
representations of the fundamental group

of          into 



And then one goes on to show that their S-
duals, which are the “magnetic 
eigenbranes”, do indeed correspond to the

“D-modules” that are claimed by the 
geometers.



To get the “ramified case,” we just include
a surface operator….


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

