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Plan of Talk

• Introduction - Main Motivation

• New Class of p-Brane Theories – Weyl-Conformal Invariance for
any p, Intrinsically Lightlike Branes for any even p (WILL-Branes)

• WILL-Brane Solutions in Various Gravitational Backgrounds – the
WILL-Brane as a Material Event Horizon

• WILL-Brane as a dynamical source for gravity and electromag-
netism – the Membrane Paradigm

• WILL-Brane Dynamics in Kaluza-Klein Spaces – trapped massless
winding modes

• Conclusions
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Introduction - Main Motivation

Geometrically motivated field theories (gravity, strings, branes, etc.)

– their Lagrangian formulation requires reparametrization-covariant

(generally-covariant) integration measure densities. Standard choice

is:

• Standard Riemannian:
√
−g with g ≡ det ||gµν||

However, equally well-suited is the following:

• Modified non-Riemannian:

Φ(ϕ) ≡ 1
D! εµ1...µD εi1...iD ∂µ1ϕ

i1 . . . ∂µDϕiD
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Models involving Gravity with modified measure, or both standard

and modified - Two-Measure Gravitational Models :

S =
∫

dDxΦ(ϕ)L1 +
∫

dDx
√
−g L2

L1,2 = e
αφ
MP [−

1

κ
R(g,Γ)−

1

2
gµν∂µφ∂νφ + (Higgs) + (fermions)]

Auxiliary fields ϕi are pure-gauge degrees of freedom except for the

new dynamical “geometric” field:

ζ(x) ≡ Φ(ϕ)√
−g

– determined only through the matter fields locally (i.e.,

without gravitational interaction).



Two-measure gravity models address various basic problems and pro-

vide possible solutions:

• Scale invariance and its dynamical breakdown; Spontaneous

generation of dimensionfull fundamental scales;

• Cosmological constant problem;

• Geometric origin of fermionic families.

• Applications in modern brane-world scenarios.
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The new Weyl-conformally invariant p-brane models will describe light-
like branes.

Role of lightlike membranes (“shells”) in General Relativity:

• Describe impulsive lightlike signals from violent astrophysical events
[C. Barrabes, P. Hogan, “Singular Null-Hypersurfaces in General
Relativity”] – final explosion in cataclysmic processes (supernovae,
collision of neutron stars) produces burst of matter travelling with
the speed of light plus gravitational radiation.

• “Membrane Paradigm” in black-hole physics [K. Thorne et.al.,
W. Israel et.al.] – event horizons as membranes. Our Weyl-
conformally invariant membrane (p = 2) model provides explicit
dynamical realization of the “membrane paradigm”.
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New Class of Weyl-Invariant p-Brane Theories.

Consider the following new kind of p-brane action involving modified
world-volume measure Φ(ϕ) and an auxiliary (Abelian) world-volume
gauge field Aa:

S = −
∫

dp+1σ Φ(ϕ)[
1

2
γab∂aXµ∂bX

νGµν −
√

Fab(A)Fcd(A)γacγbd]

Φ(ϕ) ≡
1

(p + 1)!
εi1...ip+1

εa1...ap+1∂a1ϕ
i1 . . . ∂ap+1ϕ

ip+1

where Fab = ∂aAb − ∂bAa and a, b = 0,1, . . . , p; i, j = 1, . . . , p + 1.

The above action is invariant under Weyl (conformal) symmetry:

γab −→ γ′ab = ρ γab , ϕi −→ ϕ′ i = ϕ′ i(ϕ)

with Jacobian det‖∂ϕ′ i

∂ϕj ‖ = ρ.
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S = −
∫

dp+1σ χ
√
−γ[

1

2
γab∂aXµ∂bX

νGµν −
√

FabFcdγ
acγbd] , χ ≡

Φ(ϕ)
√
−γ

Differences w.r.t. the standard Nambu-Goto p-branes (in the Polyakov-

like formulation) :

• New integration measure density Φ(ϕ) instead of
√
−γ, and no

“cosmological-constant” term

((p− 1)
√
−γ);

• Variable brane tension χ ≡ Φ(ϕ)√
−γ

which is Weyl-conformal gauge

dependent: χ → ρ
1
2(1−p)χ;
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• Auxiliary world-sheet gauge field Aa in a “square-root” Maxwell
(Yang-Mills) term (Nielsen-Olesen, Spallucci et.al.); straightfor-

ward generalization to non-Abelian Aa:
√

Tr(FabFcd)γ
acγbd with

Fab = ∂aAb − ∂bAc + i[Aa, Ab];

• Possible couplings of auxiliary Aa to external world-volume (“color”
charge) currents Ja;

• Weyl-invariant for any p; describes intrinsically light-like p-branes
for any even p (i.e., odd-dimensional world-volume).

REMARK. There are NO quantum conformal anomalies in odd

dimensions!



Intrinsically Light-Like Branes

Consider the γab-eqs. of motion:

1

2
(∂aX∂bX) +

FacγcdFdb√
FFγγ

= 0

employing short-hand notation:

(∂aX∂bX) ≡ ∂aXµ∂bX
νGµν ,

√
FFγγ ≡

√
FabFcdγ

acγbd

Since the induced metric gab ≡ (∂aX∂bX) is required to be Lorentz-

type, the latter eq. is consistent for odd (p + 1) only. Further, Fab is

anti-symmetric (p+1)×(p+1) matrix, therefore, Fab is not invertible

in any odd (p + 1) – it has at least one zero-eigenvalue vector-field

V a (FabV
b = 0).
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Therefore, for any odd (p + 1) the induced metric (∂aX∂bX) on the
world-volume of the Weyl-invariant brane is singular (as opposed to
the ordinary Nambu-Goto brane (!)) :

(∂aX∂bX)V b = 0 , i.e. (∂V X∂V X) = 0 , (∂⊥X∂V X) = 0

where ∂V ≡ V a∂a and ∂⊥ are derivates along the tangent vectors in
the complement of V a.

Important Conclusion – An Overall Constraint on Dynamics.
Every point on the world-volume of the Weyl-invariant p-brane (for
odd (p+1)) moves with the speed of light in a time-evolution along the
zero-eigenvalue vector-field V a. Therefore, we will use the acronym
WILL- (Weyl-Invariant Light-Like)-brane model.

Remark. We will use a natural ansatz for the world-volume electric
field F0i = 0 implying that (V a) = (1,0), i.e., ∂V = ∂0 ≡ ∂τ .



Electrically Charged WILL-Membrane, Coupling to Rank 3 Gauge
Potential

We can extend the WILL-brane model via couplings to external space-
time electromagnetic field Aµ and, furthermore, to external space-
time rank 3 gauge potential Aµνλ keeping manifest Weyl-invariance:

S = −
∫

d3σ Φ(ϕ)[
1

2
γab∂aXµ∂bX

νGµν −
√

FabFcdγ
acγbd]

− q
∫

d3σ εabcAµ∂aXµFbc −
β

3!

∫
d3σ εabc∂aXµ∂bX

ν∂cX
λAµνλ

Physical significance of Aµνλ: in D = 4 when coupled to gravity its
field-strength

Fκλµν = 4∂[κAλµν] = Λ
√
−Gεκλµν

produces dynamical (positive) cosmological constant K = 4πGNΛ2.
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WILL-Membrane in Spherically-Symmetric Background

General form of spherically-symmetric gravitational background:

(ds)2 = −A(r, t)(dt)2 + B(r, t)(dr)2 + C(r, t)[(dθ)2 + sin2(θ) (dφ)2]

Schwarzschild: A(r) = B−1(r) = 1− 2GM
r .

Reissner-Nordström: A(r) = B−1(r) = 1− 2GM
r + GQ2

r2
.

(Anti) de Sitter: A(r) = B−1(r) = 1−Kr2.

Schwarzschild-(anti)-de-Sitter: A(r) = B−1(r) = 1−Kr2 − 2GM
r .

Reissner-Nordström-(anti)-de-Sitter:

A(r) = B−1(r) = 1−Kr2 − 2GM
r + GQ2

r2
.
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Ansatz: X0 ≡ t = τ , X1 ≡ r = r(τ, σ1, σ2)

X2 ≡ θ = θ(σ1, σ2) , X3 ≡ φ = φ(σ1, σ2)

Substituting the above into the WILL-brane eqs. one gets:

(i) Equations for r(τ, σ1, σ2) from the lightlike and Virasoro-type con-

straints:

∂r

∂τ
= ±

√
A

B
,

∂r

∂σi
= 0

(ii) A restriction on the gravitational background itself (comes from

∂0

(
∂iX

µGµν∂jX
ν
)
= 0, which is a consequence of the constraints and

Xµ eqs. of motion) :

dC

dτ
≡

∂C

∂t
±
√

A

B

∂C

∂r

 |t=τ, r=r(τ) = 0
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The above eq. tells us that the (squared) sphere radius R2 ≡ C(r, t)

must remain constant along the WILL-brane trajectory. For static

backgrounds R2 ≡ C(r) we have:

r(τ) = r0 (= const) , A(r0) = 0

i.e., the WILL-brane automatically positions itself on the event hori-

zon.



WILL-Branes and “Membrane Paradigm” in Black Hole Physics

Consider the coupled Einstein-Maxwell-WILL-brane system:

S =
∫

d4x
√
−G

[
R(G)

16πGN
−

1

4
FµνFµν −

1

4!2
FκλµνFκλµν

]
+ SWILL−brane

where Fµν = ∂µAν − ∂νAµ, Fκλµν = 4∂[κAλµν], and:

SWILL−brane = −
∫

d3σ Φ(ϕ)
[1
2

γab∂aXµ∂bX
νGµν −

√
FabFcdγ

acγbd
]

−q
∫

d3σ εabcAµ∂aXµFbc −
β

3!

∫
d3σ εabc∂aXµ∂bX

ν∂cX
λAµνλ

Eqs. of motion for the WILL-membrane subsystem are the same as
above, the rest being:

Rµν −
1

2
GµνR = 8πGN

(
T

(EM)
µν + T

(rank−3)
µν + T

(brane)
µν

)
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∂ν

(√
−GGµκGνλFκλ

)
+ jµ = 0

where:

T
(EM)
µν = FµκFνλGκλ −Gµν

1

4
FρκFσλGρσGκλ

T
(rank−3)
µν =

1

3!

[
FµκλρFν

κλρ −
1

8
GµνFκλρσFκλρσ

]
= −

1

2
Λ2Gµν

T
(brane)
µν = −GµκGνλ

∫
d3σ

δ(4)(x−X(σ))√
−G

χ
√
−γγab∂aXκ∂bX

λ

jµ ≡ q
∫

d3σ δ(4)(x−X(σ))εabcFbc∂aXµ



Spherically Symmetric Static Solution

Space-time consisting of two regions separated by the WILL-brane as

a common horizon:

(ds)2 = −A(∓)(r)(dt)2 +
1

A(∓)(r)
(dr)2 + r2[(dθ)2 + sin2(θ) (dφ)2]

(a) Schwarzschild-de-Sitter space-time inside horizon [(-)]:

A(r) ≡ A(−)(r) = 1−K(−)r
2 −

2GM(−)

r
, for r < r0 ≡ rhorizon

(b) Reissner-Norström-de-Sitter space-time outside horizon [(+)]:

A(r) ≡ A(+)(r) = 1−K(+)r
2 −

2GM(+)

r
+

GQ2

r2
, for r > r0

where Q2 = 8πq2r40;
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Coulomb field outside horizon:

A0 =

√
2 q r20
r

, for r ≥ r0

no electric field inside horizon:

A0 =
√

2 q r0 = const , for r ≤ r0

A1 = . . . = AD−1 = 0

The WILL-membrane locates itself automatically on (“straddles”) the
common event horizon at r = r0:

X0 ≡ t = τ , θ = σ1 , φ = σ2

r(τ, σ1, σ2) = r0 = const where A(−)(r0) = A(+)(r0) = 0



Important:

WILL-brane dynamics imposes several matching conditions for the

metric components and the induced cosmological constant when cross-

ing the WILL-brane hypersurface:

(i) Jump of induced cosmological constant:

K(±) = 4πGΛ2
(±) for r ≥ r0 ( r ≤ r0 ) , Λ(+) = Λ(−) − β

(ii) From the WILL-membrane contribution to the energy-momentum

tensor on the r.h.s. of Einstein eqs. :

∂

∂r
A(+)|r=r0

−
∂

∂r
A(−)|r=r0

= −16πGχ

(χ - the brane tension);
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(iii) Matching the WILL-brane X0 eq. of motion from “inside” and

“outside”:

∂

∂r
A(+)|r=r0

−
∂

∂r
A(−)|r=r0

= −
r0(2q2 + β2)∂rA(−)|r=r0

2χ + βr0Λ(−)

The matching conditions allow to express all physical parameters in

terms of 3 free parameters (q2, β,Λ) where:

q – WILL-brane surface electric charge density,

β – WILL-brane charge w.r.t. rank 3 space-time gauge potential

Aλµν,

Λ ≡ Λ(−) – vacuum expectation value of Fκλµν (field-strength of Aλµν)

generating the induced cosmological constant K(−) = 4πGNΛ2 inside

horizon.
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Brane tension: χ = r0
4

(
2q2 + β2 − 2βΛ

)

Schwarzschild mass: M(−) = r0S(q2,β,Λ)
2GNR(q2,β,Λ)

R.-N. mass: M(+) = M(−) + r0
2GNR(q2,β,Λ)

(
2q2 + 2

3βΛ− 1
3β2

)
R.-N. charge: Q2 = 8πGNq2r40

Horizon radius: r20 = 1
4πGNR(q2,β,Λ)

, where:

R(q2, β,Λ) ≡ Λ2 − βΛ + q2 +
β2

2

S(q2, β,Λ) ≡
2

3
Λ2 − βΛ + q2 +

β2

2
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Common Horizon:

(a) De-Sitter type horizon from the point of view of internal Schwarzschild-

de-Sitter geometry.

(b) External Reissner-Nordström horizon from the point of view of

external Reissner-Nordström-de-Sitter geometry. In particular, it re-

duces to usual Schwarzschild horizon for q = 0 and Λ(−) = β (external

geometry becomes pure Schwarzschild).

Main Result. The Einstein-Maxwell-WILL-brane system is the first

explicit dynamical realization of the “membrane paradigm” in black

hole physics.
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Trapping Potential Well Over Common Horizon.
Consider planar motion of a (charged) test patricle with mass m and
electric charge q0 in the above background: internal Schwarzschild-
de-Sitter matched with external Reissner-Norström-de-Sitter along a
common event horizon materialized by Weyl-conformal invariant light-
like membrane, which simultaneously is the material and charge source
for gravity and electromagnetism. Conservation of energy (E) and or-
bital momentum (J) yields (prime indicates proper-time derivative):

E2

m2
= r′2 + V 2

eff(r)

V 2
eff(r) = A(−)(r)

(
1 +

J2

m2r2

)
+

2Eq0
m2

√
2qr0 −

q20
m2

2q2r20 (r ≤ r0)

V 2
eff(r) = A(+)(r)

(
1 +

J2

m2r2

)
+

2Eq0
m2

√
2qr20
r

−
q20
m2

2q2r40
r2

(r ≥ r0)
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Analysis shows that in the parameter interval: Λ(−) ∈

q2+β2

2
β ,∞

 the

effective (squared) potential V 2
eff(r) acquires a potential “well” in the

vicinity of the WILL-brane (the common horizon) with a minimum on

the brane itself.

The simplest case is matching of interior Schwarzschild-de-Sitter (with

dynamically generated cosmological constant) against pure exterior

Schwarzschild (with no cosmological constant) along the WILL-brane

(the common horizon), i.e. Λ(−) = β , q = 0 and β – arbitrary).

Thus, if a test particle moving towards the common event horizon

loses energy (e.g., by radiation), it may fall and be trapped by the

potential well, so that it never falls into the black hole.





Conclusions

Modifying of world-sheet (world-volume) integration measure –

significantly affects string and p-brane dynamics.

• Acceptable dynamics in the new class of string/brane models

naturally requires the introduction of auxiliary world-sheet/world-

volume gauge fields.

• By employing square-root Yang-Mills actions for the auxiliary world-

sheet/world-volume gauge fields one achieves Weyl conformal

symmetry in the new class of p-brane theories for any p.
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• String/brane tension - not a constant scale given ad hoc, but

rather an additional dynamical degree of freedom beyond the or-

dinary string/brane degrees of freedom.

• Intrinsically light-like p-branes for any even p (WILL-branes).

NO quantum conformal anomalies ((p + 1) = odd).

• When put in a gravitational black hole background, the WILL-

membrane automatically positions itself on (“materializes”) the

event horizon.



• Coupled Einstein-Maxwell-WILL-membrane system possesses a

self-consistent solution where the WILL-membrane serves as a

source for gravity and electromagnetism. Moreover, it automati-

cally “straddles” the common event horizon for a Schwarzschild-

de-Sitter space-time (in the interior) and Reissner-Nordström-de-

Sitter space-time (in the exterior). This is the first explicit dy-

namical realization of the “membrane paradigm” in black hole

physics.

• Trapping potential “well” on common horizon “guarding” the real

Scwarzschild-type horizon.
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