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Motivation

Description of structured submanifolds in Hitchin’s
generalised geometry. [Hitchin, Gualtieri]

Obtain calibration conditions for submanifolds of
geometries with G×G–structure. [Dadok, Harvey, Lawson]

Description of branes in this framework. Of particular
interest is the type II case with SU(3)× SU(3)–structure.
[Koerber, Martucci, Smyth]

Understand how T–duality acts on the calibration
conditions. [Ben-Bassat, Boyarchenko]
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G–structures

Consider a manifold Mn with tangent bundle T . The
transition functions lie in GL(n).
A reduction of the structure group is equivalent to the
existance of invariant objects.
The different choices for a subgroup G are parametrised by
the coset GL(n)/G.
Therefore the existance of a reduction to G requires the
existance of a section of GL(n)/G.

Example
A Riemannian metric is stabilised by O(n), the choice of a
metric is equivalent to a reduction from GL(n) to O(n). The
choice of an orientation reduces the group to SO(n). However,
this is only possible if w1(M) = 0.
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Generalised geometry

Consider the vector bundle T ⊕ T ∗ over a manifold Mn.
Elements of T ⊕ T ∗ are of the form x⊕ ξ.
We have a natural inner product 〈x, ξ〉 = −1

2ξ(x) of split
signature. This reduces the structure group from GL(2n)
to O(n, n).
The choice of an orientation reduces the structure group to
SO(n, n).
A special element of SO(n, n) are the two–forms b, acting
on x⊕ ξ as

eb(x⊕ ξ) =
(

1 0
b/2 1

) (
x
ξ

)
.
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Spinors

In general the existance of a spin structure requires that
the second Stiefel-Whitney class vanishes, w2(M) = 0.
On T ⊕ T ∗ we have that

w2(T ⊕ T ∗) = w2(T ) + w1(T ) ∪ w1(T ∗) + w2(T ∗) = 0,

since wk(T ) = −wk(T ∗).
Therefore T ⊕ T ∗ is always spinnable.
Elements ρ of Spin(n, n) can be regarded as even or odd
forms of mixed degree. We get the irreducible spin
representations S± = Λev,odT ∗ ⊗

√
ΛnTn.
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Spinors

The Clifford–action of elements in T ⊕ T ∗ on spinors is
defined as (x⊕ ξ) • ρ = −xxρ + ξ ∧ ρ.
The tranformation under the action of a two form b is
given by eb ∧ ρ.
We can define a bilinear form on S± as 〈ρ, τ〉 = [ρ ∧ τ̂ ]n,
where the ˆ is an anti-automorphism defined as
âp = (−1)p(p+1)/2 and [ · ]n denotes a projection on the
forms of degree n.
Pure spinors are defined by the property that their
annihilator, the space

Wρ = {x⊕ ξ ∈ T ⊕ T ∗|(x⊕ ξ) • ρ = 0}

is of maximal dimension.



Calibrated
cycles and
T–duality

Florian
Gmeiner

Introduction

Generalised
geometry

Calibrations

T–Duality

Conclusions

G×G structures

The existance of a metric g and a two–form b induces a
reduction from SO(n, n) to SO(n)× SO(n). (g, b) is
sometimes also called a generalised metric.
For spinors ρ ∈ S± this allows a description in terms of two
chiral spinors ΨL,ΨR ∈ Spin(n) as ρ = eb[ΨL ⊗ΨR].
If we are given a pair (ΨL,ΨR), this reduces the structure
group to GL ×GR.

Example
For n = 6 we get a reduction to SU(3)× SU(3) (as the
existance of one spinor reduces to SU(3) in the classical case),
for n = 7 we get G2 ×G2, n = 8 gives Spin(7)× Spin(7), etc.
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Classical calibrations

For a Riemannian metric g and a p–form ωp, the
restriction of ωp to a p–dimensional subspace U with

jU : U ↪→ T

induces a volume form.
This can be compared with the Riemannian volume volU .
ω defines a calibration, if we have that

j∗Uωp ≤ volU

for any U .
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Generalised calibrations

A generalised calibration can be defined in terms of an
even or odd spinor ρ ∈ S±.
Instead of considering a p-submanifold U alone, we take
the pair (U,F ), F ∈ Λ2U∗.

The associated form ρU,F = eF ∧ ?v̂olU is pure, seen as a
T ⊕ T ∗–spinor.

Definition
A spinor ρ defines a calibration, if 〈ρ, ρU,F 〉 ≤ 1.
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Generalised calibrations

To make this look more like the classical case, we can
rewrite this to

[e−F ∧ j∗Uρ]p ≤
√

det
(
j∗U (g + b)− F

)
volU

If ρ is closed, we have that [Koerber]

I =
∫

U

√
det(g|U + b|U − F )volU

is minimised.
If we have dHe−φρ = dH(eb ∧C), a submanifold calibrated
by ρ minimises [Martucci, Smyth]

I =
∫

U
e−φ

√
det(g|U + b|U − F ) volU −

∫
U

eb|U−F ∧ C|U .
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SU(3)× SU(3)

Example
In the case of n = 6 we obtain in particular also the
SU(3)–cases. There the calibration form can be written as
ρ = eb[Ψ⊗Ψ] and we get for an even calibration form
ρev = eiω and p = 2k the condition (B-branes)

1
k!

(j∗Uω + F )k =
√

det(j∗Ug − F ) volU .

Choosing an odd calibration form (A-branes), we get[
e−F ∧ j∗UReΩ

]p
=

√
det(j∗Ug − F ) volU ,

which includes Langrangian as well as coisotropic branes. In the
generalised case there might also be the possibility to obtain
isotropic branes [Chiantese].



Calibrated
cycles and
T–duality

Florian
Gmeiner

Introduction

Generalised
geometry

Calibrations

T–Duality

Conclusions

G2 ×G2

Example
For n = 7 we have a G2 ×G2–structure. The calibration form
can be written as (with c/s = cos / sin

(
^(ΨL,ΨR)

)
)

[ΨL ⊗ΨR]ev = c + sω + c(α ∧ ImΩ− 1
2
ω2)

−sα ∧ ReΩ +−1
6
sω3

for a one–form α, a two–form ω and a holomorphic three–form
Ω. In particular we get the classical case, in which the
calibration condition reads

e−F ∧ j∗U (1− ?ϕ) ≤
√

det(j∗Ug − F )volU

and defines a coassociative four–cycle with anti-self-dual field
strength.
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T–Duality

T–Duality is expected to do the following
Exchange even and odd calibration forms (guided by the
classical case, where we know that A- and B-branes are
exchanged).
Respect the integrability condition
(dHe−φρ = dH(eb ∧ C)).

We can describe a T-duality transformation [Bouwknegt, Evslin, Mathai]

on T ⊕ T ∗ by a one-form θ and it’s vertical vector field X, i.e.
θ(X) = 1. Therefore Mθ := X ⊕ θ ∈ Pin(n, n). Conjugation
of the pair (g, b) with M projected onto O(n, n) gives a set
(gT , bT ) as predicted by the usual Busher rules.
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T–Duality

The action of Mθ on a spinor ρ is given by Mθ • ρ.
This preserves the Spin(n, n) orbit–structure and gives an
isomorphism between Λev,od and Λod,ev.
For bi–spinors ρ = eb[ΨL ⊗ΨR] we get that
M• ρ = (−Xx+θ∧)eb[ΨL ⊗ΨR] =‖X‖ ebT

[ΨT
L ⊗ΨT

R].
In particular bi–spinors of equal chirality are mapped into
spinors of opposite chirality and vice versa (as expected
from the exchange of type IIA and IIB theories).
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T–Duality and calibrations

Let ρ define a calibration for (g, b). Then the application of Mθ

on 〈ρ, ρU,F 〉 ≤ 1 gives

(−1)n+1〈ρT ,Mθ • ρU,F 〉 ≤ 1.

Since Mθ is orbit and norm preserving, (−1)n+1ρT
U,F is pure

and of unit norm, so it equals ρUT ,F T for some suitable
(UT , F T ).

 T-Duality transformations preserve calibrations.
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T–Duality and calibrations

If we have dHe−φρ = dH(eb ∧ C) such that the calibrated
subspaces (U,F ) minimise a functional I(φ,C), we find that

XxdHρ− θ ∧ dHρ ∼= dHT ‖X‖ ρT ,

and the subspaces (UT , F T ) minimise the functional
I(φT , CT ), with

φT = φ− ln ‖X‖

and
CT = e−bT ∧ (−Xx+θ∧)eb ∧ C.
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Conclusions

Summary

We find a general calibration confition for spaces with
G×G–structure.
The known classical cases for SU(3) or G2 structure are
included, as well as the SU(3)× SU(3) case.
Calibration is preserved by T-Duality, which maps
calibrated cycles wrt to one geometry into calibrated cycles
wrt to the T-dual geometry.

Outlook

Possible to understand (co-)isotropic branes better in this
framework?
Find explicit examples of new brane configurations for
accessible models. [Graña, Minassian, Petrini, Tomasiello]
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