Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

Calibrated cycles and T-duality

in collaboration with Frederik Witt (FU Berlin)

based on

math.dg/0605710

Florian Gmeiner

NIKHEF, Amsterdam

RTN 2006, Napoli, 10/13/06

see also: Talk by Luca Martucci

Outline

Florian Gmeiner

Introduction

Generalised geometry Calibrations T–Duality

Conclusions

1 Introduction

2 Generalised geometry

3 Calibrations

④ T−Duality

Motivation

Florian Gmeiner

Introduction

- Generalised geometry
- Calibrations
- T–Duality
- Conclusions

- Description of structured submanifolds in Hitchin's generalised geometry. [Hitchin, Gualtieri]
- Obtain calibration conditions for submanifolds of geometries with $G\times G\mbox{-structure.}$ $_{\rm [Dadok,\ Harvey,\ Lawson]}$
- Description of branes in this framework. Of particular interest is the type II case with $SU(3)\times SU(3)$ -structure. [Koerber, Martucci, Smyth]
- Understand how T-duality acts on the calibration conditions. [Ben-Bassat, Boyarchenko]

G-structures

Florian Gmeiner

Introduction

Generalised geometry Calibrations T–Duality

Conclusions

- Consider a manifold M^n with tangent bundle T. The transition functions lie in GL(n).
- A reduction of the structure group is equivalent to the existance of invariant objects.
- $\bullet\,$ The different choices for a subgroup G are parametrised by the coset GL(n)/G.
- Therefore the existance of a reduction to G requires the existance of a section of GL(n)/G.

Example

A Riemannian metric is stabilised by O(n), the choice of a metric is equivalent to a reduction from GL(n) to O(n). The choice of an orientation reduces the group to SO(n). However, this is only possible if $w_1(M) = 0$.

Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

Generalised geometry

- Consider the vector bundle $T \oplus T^*$ over a manifold M^n .
- Elements of $T \oplus T^*$ are of the form $x \oplus \xi$.
- We have a natural inner product $\langle x,\xi\rangle = -\frac{1}{2}\xi(x)$ of split signature. This reduces the structure group from GL(2n) to O(n,n).
- The choice of an orientation reduces the structure group to SO(n,n).
- A special element of SO(n,n) are the two–forms b, acting on $x\oplus\xi$ as

$$e^{b}(x \oplus \xi) = \begin{pmatrix} 1 & 0\\ b/2 & 1 \end{pmatrix} \begin{pmatrix} x\\ \xi \end{pmatrix}$$

Spinors

Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

In general the existance of a spin structure requires that the second Stiefel-Whitney class vanishes, w₂(M) = 0.
On T ⊕ T* we have that

 $w_2(T \oplus T^*) = w_2(T) + w_1(T) \cup w_1(T^*) + w_2(T^*) = 0,$

since $w_k(T) = -w_k(T^*)$.

- Therefore $T \oplus T^*$ is always spinnable.
- Elements ρ of Spin(n, n) can be regarded as even or odd forms of mixed degree. We get the irreducible spin representations $S_{\pm} = \Lambda^{ev,od}T^* \otimes \sqrt{\Lambda^n T^n}$.

Spinors

Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

• The Clifford-action of elements in $T \oplus T^*$ on spinors is defined as $(x \oplus \xi) \bullet \rho = -x \llcorner \rho + \xi \land \rho$.

• The tranformation under the action of a two form b is given by $e^b \wedge \rho.$

• We can define a bilinear form on S_{\pm} as $\langle \rho, \tau \rangle = [\rho \wedge \hat{\tau}]^n$, where the $\hat{}$ is an anti-automorphism defined as $\hat{a^p} = (-1)^{p(p+1)/2}$ and $[\cdot]^n$ denotes a projection on the forms of degree n.

• *Pure spinors* are defined by the property that their annihilator, the space

$$W_{\rho} = \{ x \oplus \xi \in T \oplus T^* | (x \oplus \xi) \bullet \rho = 0 \}$$

is of maximal dimension.

Florian Gmeiner

Introduction

- Generalised geometry
- Calibrations
- T–Duality
- Conclusions

• The existance of a metric g and a two-form b induces a reduction from SO(n,n) to $SO(n) \times SO(n)$. (g,b) is sometimes also called a generalised metric.

- For spinors $\rho \in S_{\pm}$ this allows a description in terms of two chiral spinors $\Psi_L, \Psi_R \in Spin(n)$ as $\rho = e^b[\Psi_L \otimes \Psi_R]$.
- If we are given a pair $(\Psi_L,\Psi_R),$ this reduces the structure group to $G_L\times G_R.$

Example

 $G \times G$ structures

For n = 6 we get a reduction to $SU(3) \times SU(3)$ (as the existance of one spinor reduces to SU(3) in the classical case), for n = 7 we get $G_2 \times G_2$, n = 8 gives $Spin(7) \times Spin(7)$, etc.

Classical calibrations

Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

• For a Riemannian metric g and a $p\text{--form }\omega^p,$ the restriction of ω^p to a p--dimensional subspace U with

$$j_U: U \hookrightarrow T$$

induces a volume form.

• This can be compared with the Riemannian volume vol_U . ω defines a *calibration*, if we have that

$$j_U^* \omega^p \le vol_U$$

for any U.

Florian Gmeiner

- Introduction
- Generalised geometry
- Calibrations
- T–Duality
- Conclusions

- A generalised calibration can be defined in terms of an even or odd spinor $\rho \in S_{\pm}.$
- Instead of considering a p-submanifold U alone, we take the pair $(U,F),\ F\in\Lambda^2 U^*.$
- The associated form $\rho_{U,F} = e^F \wedge \widehat{\star vol_U}$ is *pure*, seen as a $T \oplus T^*$ -spinor.

Definition

Generalised calibrations

A spinor ρ defines a calibration, if $\langle \rho, \rho_{U,F} \rangle \leq 1$.

Florian Gmeiner

- Introduction
- Generalised geometry

Calibrations

T–Duality

Conclusions

• To make this look more like the classical case, we can rewrite this to

$$[e^{-F} \wedge j_U^* \rho]^p \le \sqrt{\det\left(j_U^*(g+b) - F\right)} \, vol_U$$

• If ρ is closed, we have that $_{\rm [Koerber]}$

$$I = \int_{U} \sqrt{\det(g_{|U} + b_{|U} - F)} vol_{U}$$

is minimised.

Generalised calibrations

• If we have $d_H e^{-\phi}\rho = d_H(e^b\wedge C)$, a submanifold calibrated by ρ minimises $_{\rm [Martucci,\ Smyth]}$

$$I = \int_U e^{-\phi} \sqrt{\det(g_{|U} + b_{|U} - F)} \operatorname{vol}_U - \int_U e^{b_{|U} - F} \wedge C_{|U}.$$

$SU(3) \times SU(3)$

Example

Florian Gmeiner

Introduction Generalised geometry

Calibrations

T–Duality

Conclusions

In the case of n = 6 we obtain in particular also the SU(3)-cases. There the calibration form can be written as $\rho = e^b[\Psi \otimes \Psi]$ and we get for an even calibration form $\rho^e v = e^{i\omega}$ and p = 2k the condition (*B-branes*)

$$\frac{1}{k!} \left(j_U^* \omega + F \right)^k = \sqrt{\det(j_U^* g - F)} \operatorname{vol}_U.$$

Choosing an odd calibration form (A-branes), we get

$$\left[e^{-F} \wedge j_U^* \operatorname{Re}\Omega\right]^p = \sqrt{\det(j_U^* g - F)} \operatorname{vol}_U,$$

which includes Langrangian as well as coisotropic branes. In the generalised case there might also be the possibility to obtain *isotropic* branes [Chiantese].

Florian Gmeiner

Introduction Generalised geometry

Calibrations

T–Duality

Conclusions

$G_2 \times G_2$

Example

For n = 7 we have a $G_2 \times G_2$ -structure. The calibration form can be written as (with $c/s = \cos / \sin (\sphericalangle(\Psi_L, \Psi_R))$)

$$[\Psi_L \otimes \Psi_R]^{ev} = c + s\omega + c(\alpha \wedge \operatorname{Im}\Omega - \frac{1}{2}\omega^2) -s\alpha \wedge \operatorname{Re}\Omega + -\frac{1}{6}s\omega^3$$

for a one–form $\alpha,$ a two–form ω and a holomorphic three–form $\Omega.$ In particular we get the classical case, in which the calibration condition reads

$$e^{-F} \wedge j_U^*(1 - \star \varphi) \le \sqrt{\det(j_U^*g - F)} vol_U$$

and defines a coassociative four-cycle with anti-self-dual field strength.

T–Duality

Florian Gmeiner

Introduction

Generalise geometry

Calibrations

T–Duality

Conclusions

T-Duality is expected to do the following

- Exchange even and odd calibration forms (guided by the classical case, where we know that A- and B-branes are exchanged).
- Respect the integrability condition $(d_H e^{-\phi} \rho = d_H (e^b \wedge C)).$

We can describe a T-duality transformation [Bouwknegt, Evslin, Mathai] on $T \oplus T^*$ by a one-form θ and it's vertical vector field X, i.e. $\theta(X) = 1$. Therefore $\mathcal{M}_{\theta} := X \oplus \theta \in Pin(n, n)$. Conjugation of the pair (g, b) with \mathcal{M} projected onto O(n, n) gives a set (g^T, b^T) as predicted by the usual Busher rules.

Calibrated cycles and T–duality Florian

T–Duality

Gmeiner Introduction

Generalise

Calibrations

T–Duality

Conclusions

- The action of \mathcal{M}_{θ} on a spinor ρ is given by $\mathcal{M}_{\theta} \bullet \rho$.
- This preserves the Spin(n,n) orbit-structure and gives an isomorphism between $\Lambda^{ev,od}$ and $\Lambda^{od,ev}$.
- For bi-spinors $\rho = e^b[\Psi_L \otimes \Psi_R]$ we get that $\mathcal{M} \bullet \rho = (-X \sqcup + \theta \land) e^b[\Psi_L \otimes \Psi_R] = ||X|| e^{b^T}[\Psi_L^T \otimes \Psi_R^T].$
- In particular bi-spinors of equal chirality are mapped into spinors of opposite chirality and vice versa (as expected from the exchange of type IIA and IIB theories).

```
Calibrated
cycles and
T–duality
```

Florian Gmeiner

Introduction

Generalise geometry

Calibrations

T–Duality

Conclusions

Let ρ define a calibration for (g, b). Then the application of \mathcal{M}_{θ} on $\langle \rho, \rho_{U,F} \rangle \leq 1$ gives

$$(-1)^{n+1} \langle \rho^T, \mathcal{M}_{\theta} \bullet \rho_{U,F} \rangle \leq 1.$$

Since \mathcal{M}_{θ} is orbit and norm preserving, $(-1)^{n+1}\rho_{U,F}^{T}$ is pure and of unit norm, so it equals $\rho_{U^{T},F^{T}}$ for some suitable (U^{T},F^{T}) .

 \rightsquigarrow T-Duality transformations preserve calibrations.

T-Duality and calibrations

Florian Gmeiner

Introduction

Generalised geometry

Calibrations

T–Duality

Conclusions

T-Duality and calibrations

If we have $d_H e^{-\phi} \rho = d_H (e^b \wedge C)$ such that the calibrated subspaces (U, F) minimise a functional $I(\phi, C)$, we find that

$$X \llcorner d_H \rho - \theta \land d_H \rho \cong d_{H^T} ||X|| \rho^T,$$

and the subspaces (U^T,F^T) minimise the functional $I(\phi^T,C^T)$, with $\phi^T=\phi-\ln\|X\|$

and

$$C^T = e^{-b^T} \wedge (-X \llcorner + \theta \land) e^b \land C.$$

Florian Gmeiner

- Introduction
- Generalised geometry
- Calibrations
- T–Duality
- Conclusions

Conclusions

Summary

- We find a general calibration confition for spaces with $G \times G$ -structure.
- The known classical cases for SU(3) or G_2 structure are included, as well as the $SU(3)\times SU(3)$ case.
- Calibration is preserved by T-Duality, which maps calibrated cycles wrt to one geometry into calibrated cycles wrt to the T-dual geometry.

Outlook

- Possible to understand (co-)isotropic branes better in this framework?
- Find explicit examples of new brane configurations for accessible models. [Graña, Minassian, Petrini, Tomasiello]

Florian Gmeiner

- Introduction
- Generalise geometry
- Calibrations
- T–Duality
- Conclusions

Conclusions

Summary

- We find a general calibration confition for spaces with $G \times G$ -structure.
- The known classical cases for SU(3) or G_2 structure are included, as well as the $SU(3)\times SU(3)$ case.
- Calibration is preserved by T-Duality, which maps calibrated cycles wrt to one geometry into calibrated cycles wrt to the T-dual geometry.

Outlook

- Possible to understand (co-)isotropic branes better in this framework?
- Find explicit examples of new brane configurations for accessible models. [Graña, Minassian, Petrini, Tomasiello]