Fixing Moduli in Exact Type IIA Flux Vacua

Francesco Benini

SISSA/ISAS Trieste, Italy

RTN Workshop, Napoli 10 October 2006

(based on hep-th/0607223 in collaboration with B.S. Acharya and R. Valandro)

Francesco Benini (SISSA)

Fixing Moduli in Exact Type IIA Flux Vacua

RTN 2006 1 / 13

- **→ → →**

Outline

Motivations

- Calabi-Yau with Fluxes Approximation
- Moduli Stabilization
- The $T^6/(\mathbb{Z}_3)^2$ Orientifold Model

Supergravity Solution

- The Full 10d Description
- Type IIA with O6-planes
- Smearing of O6-planes: an Exact Solution

Moduli Stabilization

- Strategy
- General Calabi-Yau with Fluxes

Summary and Future Directions

Calabi-Yau with fluxes approximation: take fluxes small compared to the curvature

 Approximation in Einstein equations: in the large volume limit neglect the fluxes and their backreaction on geometry
 ↓

Calabi-Yau manifold

- Nothing more than supergravity limit: $L^2 \gg \alpha'$
- Villadoro, Zwirner, '05

DeWolfe,Gyravets,Kachru,Taylor,'05: IIA Flux Vacua can have ALL moduli stabilized classically.

 Problem: even the minimum amount of flux (Dirac quantization) can change the topology! Calabi-Yau with fluxes approximation: take fluxes small compared to the curvature

 Approximation in Einstein equations: in the large volume limit neglect the fluxes and their backreaction on geometry
 ↓

Calabi-Yau manifold

- Nothing more than supergravity limit: $L^2 \gg \alpha'$
- Villadoro,Zwirner,'05 DeWolfe,Gyravets,Kachru,Taylor,'05: IIA Flux Vacua can have ALL moduli stabilized classically.
- Problem: even the minimum amount of flux (Dirac quantization) can change the topology!

 Moduli fixing usually studied from a 4d point of view (effective potential V)

• Good:

- stability issues studied more easily
- non SUSY vacua can be studied
- control on exotic vacua, e.g. non geometric vacua

Bad:

- work in Kaluza-Klein approximation (with Calabi-Yau basis)
- could not be sure about uplift to 10d

We study moduli stabilization from a **10d point of view**.

(4) (5) (4) (5)

 Moduli fixing usually studied from a 4d point of view (effective potential V)

• Good:

- stability issues studied more easily
- non SUSY vacua can be studied
- control on exotic vacua, e.g. non geometric vacua

• Bad:

- work in Kaluza-Klein approximation (with Calabi-Yau basis)
- could not be sure about uplift to 10d

We study moduli stabilization from a 10d point of view.

The $T^6/(\mathbb{Z}_3)^2$ Orientifold Model

Type IIA SUGRA on T^6 , orbifolded by $(\mathbb{Z}_3)^2$ and orientifolded by O6-planes:

(DeWolfe,Giryavets,Kachru,Taylor,'05)

It was analysed in the large volume limit and classically.Superpotential:

$$W = p S + e_6 + e_a T^a + \kappa_{abc} b_a T^b T^c + \kappa_{abc} T^a T^b T^c$$

(Grimm,Louis,'04)

• ALL the moduli are fixed (NO massless fields)

Our main result: a full 10d description (which reproduces their results)

<<p>(日本)

Type IIA SUGRA on T^6 , orbifolded by $(\mathbb{Z}_3)^2$ and orientifolded by O6-planes:

(DeWolfe, Giryavets, Kachru, Taylor, '05)

It was analysed in the large volume limit and classically.

Superpotential:

$${\it W}=
ho\,S+e_6+e_a\,T^a+\kappa_{abc}b_a\,T^b\,T^c+\kappa_{abc}\,T^a\,T^b\,T^c$$

(Grimm,Louis,'04)

ALL the moduli are fixed (NO massless fields)

Our main result: a full 10d description (which reproduces their results)

.

ELE NOO

Type IIA SUGRA on T^6 , orbifolded by $(\mathbb{Z}_3)^2$ and orientifolded by O6-planes:

(DeWolfe,Giryavets,Kachru,Taylor,'05)

It was analysed in the large volume limit and classically.

Superpotential:

$${\it W}=
ho\,S+e_6+e_a\,T^a+\kappa_{abc}b_a\,T^b\,T^c+\kappa_{abc}\,T^a\,T^b\,T^c$$

(Grimm,Louis,'04)

• ALL the moduli are fixed (NO massless fields)

Our main result: a full 10d description (which reproduces their results)

ELE DOG

We are looking for a full 10d description of these vacua.

Strategy:

Lust-Tsimpis solution ('04)

- the most general solution on AdS₄
 with internal SU(3)-structure manifold ⇒ N = 1 SUSY vacua
- all the fluxes compatible with 4d Poincaré switched on
- "mass parameter" $F_0 \equiv m$ (massive IIA SUGRA)

Add O6-planes

• realize the $T^6/(\mathbb{Z}_3)^2$ orientifold model

.

ELE NOO

We are looking for a full 10d description of these vacua.

Strategy:

Lust-Tsimpis solution ('04)

- the most general solution on AdS_4 with internal SU(3)-structure manifold $\Rightarrow \mathcal{N} = 1$ SUSY vacua
- all the fluxes compatible with 4d Poincaré switched on
- "mass parameter" $F_0 \equiv m$ (massive IIA SUGRA)

Add O6-planes

• realize the $T^6/(\mathbb{Z}_3)^2$ orientifold model

1 = nan

(Lust,Tsimpis,'04)

 SU(3) structure is described by Kähler 2-form J and holomorphic 3-form Ω, like on Calabi-Yau. Torsions:

$$dJ = -\frac{3}{2} \operatorname{Im}(\mathcal{W}_{1}^{1\oplus 1}\Omega^{*}) + \mathcal{W}_{4}^{3\oplus\bar{3}} \wedge J + \mathcal{W}_{3}^{6\oplus\bar{6}}$$
$$d\Omega = \mathcal{W}_{1}^{1\oplus 1}J \wedge J + \mathcal{W}_{2}^{8\oplus 8} \wedge J + \mathcal{W}_{5}^{3\oplus\bar{3}*} \wedge \Omega$$

The only non-vanishing torsion classes are W₁⁻ and W₂⁻
Special case of *half-flat* manifold.

(Lust,Tsimpis,'04)

 SU(3) structure is described by Kähler 2-form J and holomorphic 3-form Ω, like on Calabi-Yau. Torsions:

$$dJ = -\frac{3}{2} \operatorname{Im}(\mathcal{W}_{1}^{1 \oplus 1} \Omega^{*}) + \mathcal{W}_{4}^{3 \oplus \overline{3}} \wedge J + \mathcal{W}_{3}^{6 \oplus \overline{6}}$$
$$d\Omega = \mathcal{W}_{1}^{1 \oplus 1} J \wedge J + \mathcal{W}_{2}^{8 \oplus 8} \wedge J + \mathcal{W}_{5}^{3 \oplus \overline{3}*} \wedge \Omega$$

The only non-vanishing torsion classes are W₁⁻ and W₂⁻
Special case of *half-flat* manifold.

Type IIA Supergravity with O6-planes

SUGRA solution (scheme)

 ϕ , Δ , f = constant

F₂, H₃, G₄ in terms of J, Ω , \tilde{F}_2 . \tilde{F}_2 is only constrained: • to be in **8** of SU(3) • $d\tilde{F}_2 \sim \mathbb{R}e \Omega + \mu_6 \delta_3$

Special case of half-flat:

$$\mathcal{W}_1^- \sim f \qquad \mathcal{W}_2^- \sim \tilde{F}_2$$

Derived conditions:

$$e^{7\phi/4}\sim rac{\mu_6}{2 ext{Vol}_6(X_6)^{1/2}}$$
 $f^2\gtrsim m^2$

Notice:

$$\begin{array}{ll} m > 0 & \Rightarrow & f > 0 \\ \Rightarrow & \mathcal{W}_1^- \neq 0 \end{array}$$

No Calabi-Yau solutions

< 回 ト < 三 ト < 三

Type IIA Supergravity with O6-planes

SUGRA solution (scheme)

 ϕ , Δ , f = constant

 F_2 , H_3 , G_4 in terms of J, Ω , \tilde{F}_2 . \tilde{F}_2 is only constrained: • to be in **8** of SU(3)

• $d\tilde{F}_2 \sim \mathbb{R}e \,\Omega + \mu_6 \,\delta_3$

Special case of half-flat:

$$\mathcal{W}_1^- \sim f \qquad \mathcal{W}_2^- \sim \tilde{F}_2$$

Derived conditions:

$$e^{7\phi/4}\sim rac{\mu_6}{2 ext{Vol}_6(X_6)^{1/2}}$$
 $f^2\gtrsim m^2$

Notice:

$$\begin{array}{ll} m > 0 & \Rightarrow & f > 0 \\ \Rightarrow & \mathcal{W}_1^- \neq 0 \end{array}$$

No Calabi-Yau solutions

< 回 ト < 三 ト < 三

Type IIA Supergravity with O6-planes

SUGRA solution (scheme)

 ϕ , Δ , f = constant

 F_2 , H_3 , G_4 in terms of J, Ω , \tilde{F}_2 . \tilde{F}_2 is only constrained: • to be in **8** of SU(3)• $d\tilde{F}_2 \sim \mathbb{R}e \Omega + \mu_6 \delta_3$

Special case of half-flat:

$$\mathcal{W}_1^- \sim f \qquad \mathcal{W}_2^- \sim \tilde{F}_2$$

Derived conditions:

$$e^{7\phi/4}\sim rac{\mu_6}{2 ext{Vol}_6(X_6)^{1/2}}$$
 $f^2\gtrsim m^2$

Notice:

$$\begin{array}{ll} m > 0 & \Rightarrow & f > 0 \\ \Rightarrow & \mathcal{W}_1^- \neq 0 \end{array}$$

No Calabi-Yau solutions

< 回 ト < 三 ト < 三

Smearing of O6-planes: an Exact Solution

In no case with non-vanishing mass and localized souces, is the geometry Calabi-Yau.

To construct explicit examples is hard.

Smearing of O6-planes

 \Rightarrow

Much like the smearing of D-branes:

- the charge is homogeneously distributed: $\delta_3 \rightarrow \mathbb{R}e \Omega$
- the orientifold projection is kept untouched.

We get:

$$m^2 > 0$$
 $f = 0$ $\tilde{F}_2 = F_2 = 0$

Calabi-Yau geometry! with backreacting fluxes

In a long wavelength approximation, it describes the same physics as the localized solution.

Smearing of O6-planes: an Exact Solution

In no case with non-vanishing mass and localized souces, is the geometry Calabi-Yau.

 \Rightarrow To construct explicit examples is *hard*.

Smearing of O6-planes Much like the smearing of D-branes: the charge is homogeneously distributed: ReΩ $\delta_3 \rightarrow$ the orientifold projection is kept untouched.

JI NOC

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Smearing of O6-planes: an Exact Solution

In no case with non-vanishing mass and localized souces, is the geometry Calabi-Yau.

 \Rightarrow To construct explicit examples is *hard*.

Smearing of O6-planes

Much like the smearing of D-branes:

- the charge is homogeneously distributed: $\delta_3 \rightarrow \mathbb{R}e \Omega$
- the orientifold projection is kept untouched.

We get:

$$m^2 > 0$$
 $f = 0$ $\tilde{F}_2 = F_2 = 0$

Calabi-Yau geometry! with backreacting fluxes

In a long wavelength approximation, it describes the same physics as the localized solution.

- E 🕨

Is there a continuous family of vacua or a discrete set?

- A VEV for a field-strength can be split in two pieces: $H_3 = H_3^{\text{flux}} + dB_2$
- Solution: the total H₃ is harmonic.
- 3 Choose H_3^{flux} harmonic (as rep. of cohomology class) and use gauge freedom to put B_2 harmonic.

There cannot be any (*physical*) non harmonic component in B_2 $\downarrow \downarrow$ they have vanishing VEV and are massive!

Implies Expand H_3^{flux} , B_2 in harmonic basis and substitute in the solution.

E SQA

Is there a continuous family of vacua or a discrete set?

• A VEV for a field-strength can be split in two pieces:

$$H_3 = H_3^{\mathsf{flux}} + dB_2$$

- Solution: the total H₃ is harmonic.
- Choose H_3^{flux} harmonic (as rep. of cohomology class) and use gauge freedom to put B_2 harmonic.

There cannot be any (*physical*) non harmonic component in B_2 $\downarrow \downarrow$ they have vanishing VEV and are massive!

三日 のへの

Is there a continuous family of vacua or a discrete set?

• A VEV for a field-strength can be split in two pieces:

$$H_3 = H_3^{\mathsf{flux}} + dB_2$$

- Solution: the total H₃ is harmonic.
- Subscription Choose H_3^{flux} harmonic (as rep. of cohomology class) and use gauge freedom to put B_2 harmonic.

There cannot be any (*physical*) non harmonic component in B_2 $\downarrow \downarrow$ they have vanishing VEV and are massive!

Substitute in the solution. Expand H_3^{flux} , B_2 in harmonic basis and substitute in the solution.

ELE NOR

This machinery applies to general Calabi-Yau solutions with general (backreacting) fluxes and smeared O6-planes.

Enough equations to fix (almost) everything:

- Kähler and complex structure moduli
- dilaton
- all axions from B₂ and one axion from C₃
- Some C₃ axions yet not fixed: not a problem. Axions take values on a compact S¹, so any other correction can lift them.

This machinery applies to general Calabi-Yau solutions with general (backreacting) fluxes and smeared O6-planes.

Enough equations to fix (almost) everything:

- Kähler and complex structure moduli
- dilaton
- all axions from B_2 and one axion from C_3
- Some C₃ axions yet not fixed: not a problem. Axions take values on a compact S¹, so any other correction can lift them.

A = A = A = A = A = A

Summary

- Solutions of IIA Supergravity with O6-planes can realize complete moduli stabilization.
- Look for solutions of IIA with backreacting fluxes and O6's, (so going beyond the Calabi-Yau with fluxes approximation); but giving explicit examples is *hard*.
- Smearing procedure on O6-charge: there are Calabi-Yau solutions → explicit examples.
- Omplete stabilization of moduli is confirmed.

Future directions

- Study compactifications on *SU*(3)-structure manifolds with localized sources.
- Localized solutions: describe D2 O6 in massive F₀ background. Relates 2+1 gauge theories and uplift of massive IIA to M-theory.

E SQA

Summary

- Solutions of IIA Supergravity with O6-planes can realize complete moduli stabilization.
- Look for solutions of IIA with backreacting fluxes and O6's, (so going beyond the Calabi-Yau with fluxes approximation); but giving explicit examples is *hard*.
- Smearing procedure on O6-charge: there are Calabi-Yau solutions → explicit examples.
- Complete stabilization of moduli is confirmed.
- Future directions
 - Study compactifications on *SU*(3)-structure manifolds with localized sources.
 - Localized solutions: describe D2 O6 in massive F₀ background. Relates 2+1 gauge theories and uplift of massive IIA to M-theory.

ELE DOG

Even if the contribution of fluxes can be locally neglected in the Equations of Motion,

the minumum amount allowed by Dirac quantization can still produce global modifications.

Smeared vs Localized solution	
Smeared source δ_3	Localized source δ_3
• Calabi-Yau: $dJ = 0$	• Half-flat: $dJ \sim \mathbb{R}e \Omega$
• $\delta_{3} \sim \mathbb{R} \mathbf{e} \Omega$	• $d ilde{F}_2\sim~\mathbb{R} extbf{e}\Omega+\delta_3$
\Downarrow	\Downarrow
• δ_3 non-trivial in cohomology	• δ_3 is trivial in cohomology

(本語)》 소문》 소문》 (月日)