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A caricatural example

LHC measures a tower of massive scalars with m2 = N m2
∗,

m∗ = 124GeV, and (among further supporting evidence)
degeneracies d(N) which perfectly fit

N d(N)

1 1
2 28
3 378
4 3276
5 20503
6 99036
7 386568
8 1265940

... ...

⇒ leaves little doubt we live in flat 32-dimensional space
R1,3 × T 28 with all radii R = 10−17m.  falsifies string theory
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Other examples

I Scattering experiments at E ∼ O(ms) showing deviations
from textbook string-string scattering.

I Varying fine structure constant α or other SM parameters:
sometimes purported as “natural” in string theory since
parameters depend on moduli and moduli could roll.
But: [Banks-Dine-Douglas]: in our present understanding of low
energy string theory, this would require excessive fine tuning
(much more than c.c.) to avoid e.g. dramatic changes in
cosmological constant and other disasters.

I Violations of general principles such as CPT conservation,
unitarity, and so on.

I Landscape vs. swampland considerations [Vafa].
I Positive FRW slices would falsify present landscape + eternal

inflation ideas.

⇒ string theory falsifiable in principle.

But what can we really hope for?
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Low energy predictions from string theory in four easy steps

1. Construct/enumerate all vacua meeting rough observational
constraints (4 huge dim, no massless scalars, tdecay > 10 Gyr, ...).

x 1050

Large degeneracy
     from fluxes

    Large degeneracy
from choice of topology

  Large degeneracy
from moduli potential

Vacua labeled by discrete microscopic data ~m: topology, flux,
critical points.
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2. Compute low energy parameters Φ (continuous and discrete) of
vacua with high accuracy.

# Generationsg

g
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2

rk G

= computing map ~m 7→ Φ(~m).
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Central question

Is this a tractable problem in principle?



Constructability



Examples of controlled constructions which satisfy some
rough observational constraints

I IIB CY3 O3/O7 + flux + inst., of suitable topological type
[Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-

Reffert-Scheidegger-Schulgin-Stieberger]. Note: control seems to
require certain simplicity in these kinds of construtions:

1. need basis of rigid divisors  resolved orbifold models.
2. log(m3/2) ∼ V4 ∼ CabV

a
2 V b

2 ⇒ (V2)min ∼ (log m3/2)/|C |
small if |C | � 1

I Variant with nonsusy AdS and exponentially large volume
balancing inst. with pert. corrections by “skewing” CY.
[Balasubramanian-Berglund-Conlon-Quevedo-Suruliz]

I IIA CY3 O6 + flux, purely classical
[DeWolfe-Giryavets-Kachru-Taylor], including metric fluxes
[Camara-Ibañez-Font,...] (but: no controlled Λ > 0 examples).

I ...
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Lessons: which semi-realistic vacua can we hope to construct
and control?

I (In some duality frame) weakly coupled, large radii.

I Small fraction of all vacua

I Physical reason to restrict to weakly coupled?

 Metastability?

decay rate ∼
∑

e−c/g2

 only suff. small g can lead to suff. metastable vacua?
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Enumerability



Question 0: Is there a finite number of vacua compatible
with rough observational constraints?

I Obviously infinite number without observational constraints,
e.g. [AdS5 × S5]N .

I [Acharya-Douglas] conjecture: finite number of vacua with mKK

bounded below and vacuum energy bounded above.

I Evidence e.g. Cheeger’s finiteness theorem:

In any sequence of Riemannian manifolds with metrics such
that

1. the sectional curvatures are all bounded above
2. the volume are bounded below
3. the diameters are bounded above

there can only be a finite number of diffeomorphism types.

⇒ E.g. potentially infinite number of CY manifolds does not
matter to finiteness of quasi-realistic vacua.
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Question 0.5: Assuming finiteness, how many quasi-realistic
vacua are there?

I Popular number which got worldwide press attention is 10500.

I Where does this number come from?

I Before we answer this question, let us review techniques to
estimate numbers of vacua: “statistics” of string vacua

I These techniques also address more refined questions, such as
number distributions of observables over parameter space.

I Note: number densities in measurable parameter space matter
more than total numbers.
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Statistics: general idea

Vacuum characterized by discrete (compactification) data ~N and
critical point of effective potential VN(z):

(~N, z) : V ′
N(z) = 0, V ′′

N(z) > 0

We want to count the number of metastable vacua in a given
ensemble in a certain region of parameter space:

Nvac(z ∈ S) =
∑
~N

∫
S

dnz δn(V ′
N(z)) | det V ′′

N(z)|

=

∫
S

dnz ρ(z)

with
ρ(z) =

∑
~N

δn(V ′
N(z)) | det V ′′

N(z)|

 not very practical; need some more structure + approx.
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Statistics: general idea

If VN = eK (|DWN |2 − 3|WN |2)

⇒ V ′
N(z) and V ′′

N(z) can be expressed in terms of W ≡ WN(z),
FA ≡ DAWN(z), MAB ≡ DADBWN(z), YABC ≡ DADBDCWN(z).

At any fixed z , varying ~N will define a large discrete set in
(W ,F ,M,Y )-space. The distribution of these points is given by
some measure dµ0[W ,F ,M,Y ]z

⇒ ρ(z) =
∫

dµ0[W ,F ,M,Y ]z f (W ,F ,M,Y )z → finite dim. int!
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Toy example

Type IIB on rigid CY (⇒ only dilaton-axion τ).
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General distributions of susy IIB flux vacua

I Number of flux vacua in region S of moduli space

NS(L ≤ L∗) ≈
(2πL∗)

b3

b3!

∫
S

1

πm
det(R + ω1)

where L∗ = χ(X4)/24.

Example [Giryavets-Kachru-Tripathy-Trivedi]: X3 = CY
hypersurface in WP[1, 1, 1, 1, 4], X4 = CY hypersurface in
WP[1, 1, 1, 1, 8, 12]. Has χ/24 = 972, b3 = 300, so

Nvac ∼ 10500

 Infamous number is just from illustrative example...
Other examples can be constructed with Nvac ∼ 105000.

I C.c. Λ = −3|W |2 uniformly distributed for |Λ| � M4
p :

dN [Λ] ∼ dΛ

⇒ smallest c.c. ∼ M4
s /Nvac .

I String coupling gs : uniformly distributed.
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Other features of distributions of IIB flux vacua

I Vacua cluster near conifold degenerations:

dN [|z |] ∼ d |z |
|z |(log |z |)2

→ Relation to dual YM coupling: |z | ∼ e−b/g2
YM ⇒ uniform:

dN ∼ dg2
YM

Behavior near other singularities similar [Eguchi].

I Large volumes strongly suppressed:

dN [V ] ∼ e−cV 2/3
d(V 2/3)

I F-breaking vacua, F =: M2
susy � M2

p , for Λ ∼ 0 or Λ > 0:

dN [F ,Λ] ∼ F 5dF dΛ

→ low breaking scale “disfavored” (but much less than
naive guess dF 2n)
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Statistics of gauge groups, particle spectra, ...

Statistics of intersecting brane models [Gmeiner-Blumenhagen-

Honecker-Lüst-Weigand,Gmeiner,Dijkstra-Huiszoon-Schellekens,Dienes]:

I Finite number of intersecting brane models in given
background.

I No significant correlations between gauge groups, matter
representations, number of generations etc.

I Number of “standard models”: about one in a billion.



Lessons: are quasi-realistic string vacua enumerable?

We don’t know, but there is no evidence against it. Nontrivial
finiteness results indicate yes, in principle.
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Complexity



2026: string theory under full control!

Imagine that we have a systematic classification of all vacua, and
that we can compute for each vacuum every low energy quantity to
very high accuracy.
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Simple model for matching observable data with discrete
microscopic data

ε

Λ0

E.g. cosmological constant in Bousso-Polchinski model:

Λ(N) = −Λ0 +
∑
ij

gijN
iN j

with flux N ∈ ZK .

Example question: ∃N : 0 ≤ Λ(N) < ε ?

Can be extended to more complicated models, other parameters, ...
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Is this a tractable problem?

I Tractable = can we solve it before the sun burns out?

I Such questions are addressed in computational complexity
theory.



Basic complexity classes

P

     NP
complete

     NP
    hard

NP

red. in pol.
    time

I P = yes/no problems solvable in polynomial time (e.g. is n1 × n2 = n3?,
primality)

I NP = problems for which a candidate solution can be verified in
polynomial time (e.g. subset sum: given finite set of integers, is there
subset summing up to zero?)

I NP-hard = loosely: problem at least as hard as any NP problem, i.e. any
NP problem can be reduced to it in polynomial time.

I NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling
salesman, n × n Sudoku, ...)

So: if one NP-complete problem turns out to be in P, then NP = P.
Widely believed: NP 6= P, but no proof to date (Clay prize problem).
Therefore: expect no P algorithms for NP-complete problems.
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Complexity of BP

I Clear: BP ∈ NP

I Bad news: BP is NP-complete
I Proof: by mapping version of subset sum to it.
I Standard subset sum: Given t, g1, . . . , gN ∈ Z,

∃ki ∈ {0, 1} :
∑

i

kigi = t?

I Modified (bit still NPC) version: we are “promised” that∑
i

kigi = t with ki ∈ Z+ ⇒ ki ∈ {0, 1}

I Reduction to BP: take BP with gij = giδij , Λ0 = t, ε = 1:

∃Ni ∈ Z : 0 ≤ −t +
∑

i

N2
i gi < 1?

 equivalent to modified subset sum.
I (Hard part is to show that promise version of subset sum is still

NP-complete.)
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ε

Exponentially many local minima for local relaxation process of
|Λ− ε/2| with steps ∆Ni = ±δki , say for gij ≡ giδij :

|∆Λ| = gk |1± 2Nk | > gk .

⇒ any |Λ− ε/2| < mink gk/2 is local minimum, but if
ε � mink gk , one generically gets stuck far from target range.
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distribution, so will always find target range, but only
guaranteed in time exponential in problem size.
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Caveats

I NP-completeness is asymptotic, worst case notion. Particular
instances may turn out easy. Cryptographic codes do get
broken.

I Some problems may be more tractable than matching
continuous parameters, e.g. matching particle spectra (?) E.g.
SU(3)× SU(2)× U(1) can be deduced in polynomial time
from rudimentary data [Coleman’s thesis].

I String theory may have much more (as yet hidden) structure
and underlying simplicity than current landscape models
suggest.

I Number distributions together with experimental input could
lead to exclusion of certain future measurable properties
without need to determine our vacuum.
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I Controlled constructions of string vacua are tricky and explicit
examples sparse  maybe overestimate size?

I Relatively unexplored stability issues: large number of
potential decay channels [Kachru-Pearson-Verlinde,

Frey-Lipper-Williams, Ceresole-Dall’Agata-Giryavets-Kallosh-Linde]
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Example: thin wall bubble nucleation

Bubble nucleation rate per unit spacetime volume for a bubble
with tension T , cosmological constant Λo outside and cosmological
constant Λi inside [Brown-Teitelboim,Coleman-De Luccia] (Mp ≡ 1):

Γ ∼ e−12π2B

B =
Tρ3

6
−

1− σi (1− Λiρ
2

3 )3/2

Λi
+

1− σo(1− Λoρ2

3 )3/2

Λo

σi ,o = sign
[
±3 T 2 + 4(Λo − Λi )

]
, ρ = bubble radius, evaluated at

stationary point of B(ρ):

ρ =
12 T

[9 T 4 + 24 T 2(Λi + Λo) + 16 (Λi − Λo)2]1/2
.

Generically Γ ∼ e−cV 2
, but if just one out of 10500 or so decay

channels is accidentally not suppressed, vacuum is not metastable...
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Computing vacuum from cosmological selection principles?

Wait, I'm a theorist! I don't need
experiment to find our vacuum!

I Can’t we just compute our vacuum ab initio from
cosmological selection principles?

I Example: (unrealistic) Hartle-Hawking measure selects
smallest positive Λ with overwhelming probability. ⇒ No need
to match data, just find the one with smallest Λ!

I Problem: finding minimal Λ(N) in BP is even harder than
NP-complete!
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Alternative to finding our exact microstate: probabilities on
parameter space

I Eternal inflation gives in principle framework for computing
probabilities on parameter space (cf. [Tegmark] review)

I Natural measure: number of “observers” (volume, stars, ...)

I Notorious problem: ordering ambiguity due to infinities,
similar to problem: “Are there more even or odd integers?”:

I Order {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}: equally many.
I Order {1, 3, 2, 5, 7, 4, 9, 11, 6, ...}: twice as many odd.

Note: similar infinity problem for “black hole maximization
principle” of [Smolin], moreover reasonable interpretation leads
to c.c. maximization [Vilenkin].

I Recent progress: proposals with not manifestly absurd
outcomes by [Vilenkin,Easter-Lim-Martin,Bousso]. Problems:

I not derived from first principles, so still ambiguous.
I highly model-dependent distributions.
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