The String Theory Landscape: Prospects for Predictivity

Frederik Denef

Leuven

Napels, October 10, 2006

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Outline

Falsifiability

Constructability

Enumerability

Complexity

Probability

Conclusions

◆□▶ <圖▶ < E▶ < E▶ = 2000</p>

Falsifiability

◆□▶ <圖▶ < ≧▶ < ≧▶ = ______</p>

Is string theory falsifiable?

<□> <圖> <圖> < => < => < => <</p>

Is string theory falsifiable?

Yes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A caricatural example

LHC measures a tower of massive scalars with $m^2 = N m_*^2$, $m_* = 124 \text{ GeV}$, and (among further supporting evidence) degeneracies d(N) which perfectly fit

Ν	d(N)
1	1
2	28
3	378
4	3276
5	20503
6	99036
7	386568
8	1265940

A caricatural example

LHC measures a tower of massive scalars with $m^2 = N m_*^2$, $m_* = 124 \text{ GeV}$, and (among further supporting evidence) degeneracies d(N) which perfectly fit

Ν	d(N)
1	1
2	28
3	378
4	3276
5	20503
6	99036
7	386568
8	1265940

 \Rightarrow leaves little doubt we live in flat 32-dimensional space $\mathbb{R}^{1,3} \times T^{28}$ with all radii $R = 10^{-17} m$.

A caricatural example

LHC measures a tower of massive scalars with $m^2 = N m_*^2$, $m_* = 124 \text{ GeV}$, and (among further supporting evidence) degeneracies d(N) which perfectly fit

Ν	d(N)
1	1
2	28
3	378
4	3276
5	20503
6	99036
7	386568
8	1265940

 \Rightarrow leaves little doubt we live in flat 32-dimensional space $\mathbb{R}^{1,3} \times T^{28}$ with all radii $R = 10^{-17} m$. \rightsquigarrow falsifies string theory

 Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.
- Violations of general principles such as CPT conservation, unitarity, and so on.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.
- Violations of general principles such as CPT conservation, unitarity, and so on.

Landscape vs. swampland considerations [Vafa].

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.
- Violations of general principles such as CPT conservation, unitarity, and so on.
- Landscape vs. swampland considerations [Vafa].
- Positive FRW slices would falsify present landscape + eternal inflation ideas.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.
- Violations of general principles such as CPT conservation, unitarity, and so on.
- Landscape vs. swampland considerations [Vafa].
- Positive FRW slices would falsify present landscape + eternal inflation ideas.
- \Rightarrow string theory falsifiable in principle.

- Scattering experiments at E ~ O(m_s) showing deviations from textbook string-string scattering.
- Varying fine structure constant α or other SM parameters: sometimes purported as "natural" in string theory since parameters depend on moduli and moduli could roll.
 But: [Banks-Dine-Douglas]: in our present understanding of low energy string theory, this would require excessive fine tuning (much more than c.c.) to avoid e.g. dramatic changes in cosmological constant and other disasters.
- Violations of general principles such as CPT conservation, unitarity, and so on.
- Landscape vs. swampland considerations [Vafa].
- Positive FRW slices would falsify present landscape + eternal inflation ideas.
- \Rightarrow string theory falsifiable in principle.

But what can we *really* hope for?

1. Construct/enumerate all vacua meeting rough observational constraints (4 huge dim, no massless scalars, $t_{\text{decav}} > 10 \text{ Gyr}, \dots$).

1. Construct/enumerate all vacua meeting rough observational constraints (4 huge dim, no massless scalars, $t_{\text{decav}} > 10 \text{ Gyr}, \dots$).

Vacua labeled by discrete microscopic data \vec{m} : topology, flux, critical points.

2. Compute low energy parameters Φ (continuous and discrete) of vacua with high accuracy.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

2. Compute low energy parameters Φ (continuous and discrete) of vacua with high accuracy.

(日) (同) (日) (日)

= computing map $\vec{m} \mapsto \Phi(\vec{m})$.

3. Find unique vacuum compatible with experiment.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3. Find unique vacuum compatible with experiment.

= find \vec{m} such that $\Phi(\vec{m}) = \Phi_{\exp}(\vec{m})$.

4. Use this vacuum to predict everything we ever wanted to know.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへで

4. Use this vacuum to predict everything we ever wanted to know.

• _____ g_{*}= ... G_{*}= ...

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

= compute $\tilde{\Phi}_{\text{everything}}(\vec{m})$.

Central question

Is this a tractable problem in principle?

Constructability

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ · ≧ · ∽Q@

▲□▶ ▲圖▶ ★≧▶ ★≧▶ / 差 / のへで

► IIB CY₃ O3/O7 + flux + inst., of suitable topological type [Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-Reffert-Scheidegger-Schulgin-Stieberger].

- IIB CY₃ O3/O7 + flux + inst., of suitable topological type [Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-Reffert-Scheidegger-Schulgin-Stieberger]. Note: control seems to require certain simplicity in these kinds of construtions:
 - 1. need basis of rigid divisors \rightsquigarrow resolved orbifold models.
 - 2. $\log(m_{3/2}) \sim V_4 \sim C_{ab} V_2^a V_2^b \Rightarrow (V_2)_{\min} \sim (\log m_{3/2})/|C|$ small if $|C| \gg 1$

- IIB CY₃ O3/O7 + flux + inst., of suitable topological type [Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-Reffert-Scheidegger-Schulgin-Stieberger]. Note: control seems to require certain simplicity in these kinds of construtions:
 - 1. need basis of rigid divisors \rightsquigarrow resolved orbifold models.
 - 2. $\log(m_{3/2}) \sim V_4 \sim C_{ab} V_2^a V_2^b \Rightarrow (V_2)_{\min} \sim (\log m_{3/2})/|C|$ small if $|C| \gg 1$

 Variant with nonsusy AdS and exponentially large volume balancing inst. with pert. corrections by "skewing" CY. [Balasubramanian-Berglund-Conlon-Quevedo-Suruliz]

- IIB CY₃ O3/O7 + flux + inst., of suitable topological type [Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-Reffert-Scheidegger-Schulgin-Stieberger]. Note: control seems to require certain simplicity in these kinds of construtions:
 - 1. need basis of rigid divisors \rightsquigarrow resolved orbifold models.
 - 2. $\log(m_{3/2}) \sim V_4 \sim C_{ab} V_2^a V_2^b \Rightarrow (V_2)_{\min} \sim (\log m_{3/2})/|C|$ small if $|C| \gg 1$
- Variant with nonsusy AdS and exponentially large volume balancing inst. with pert. corrections by "skewing" CY. [Balasubramanian-Berglund-Conlon-Quevedo-Suruliz]
- IIA CY₃ O6 + flux, purely classical [DeWolfe-Giryavets-Kachru-Taylor], including metric fluxes [Camara-Ibañez-Font,...] (but: no controlled Λ > 0 examples).

- IIB CY₃ O3/O7 + flux + inst., of suitable topological type [Kachru-Kallosh-Linde-Trivedi, FD-Douglas-Florea-Grassi-Kachru,Lüst-Reffert-Scheidegger-Schulgin-Stieberger]. Note: control seems to require certain simplicity in these kinds of construtions:
 - 1. need basis of rigid divisors \rightsquigarrow resolved orbifold models.
 - 2. $\log(m_{3/2}) \sim V_4 \sim C_{ab} V_2^a V_2^b \Rightarrow (V_2)_{\min} \sim (\log m_{3/2})/|C|$ small if $|C| \gg 1$
- Variant with nonsusy AdS and exponentially large volume balancing inst. with pert. corrections by "skewing" CY. [Balasubramanian-Berglund-Conlon-Quevedo-Suruliz]
- IIA CY₃ O6 + flux, purely classical [DeWolfe-Giryavets-Kachru-Taylor], including metric fluxes [Camara-Ibañez-Font,...] (but: no controlled Λ > 0 examples).

▲□▶ ▲圖▶ ▲蓋▶ ▲蓋▶ = 差 = の��?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

(In some duality frame) weakly coupled, large radii.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

- (In some duality frame) weakly coupled, large radii.
- Small fraction of all vacua
Lessons: which semi-realistic vacua can we hope to construct and control?

イロト 不得下 イヨト イヨト ヨー うらぐ

- (In some duality frame) weakly coupled, large radii.
- Small fraction of all vacua
- Physical reason to restrict to weakly coupled?

Lessons: which semi-realistic vacua can we hope to construct and control?

イロト 不得下 イヨト イヨト ヨー うらぐ

- (In some duality frame) weakly coupled, large radii.
- Small fraction of all vacua
- Physical reason to restrict to weakly coupled?

 \rightsquigarrow Metastability?

Lessons: which semi-realistic vacua can we hope to construct and control?

- (In some duality frame) weakly coupled, large radii.
- Small fraction of all vacua
- Physical reason to restrict to weakly coupled?

 \rightsquigarrow Metastability?

decay rate
$$\sim \sum e^{-c/g^2}$$

💷 🕥 < 🖓

 \rightsquigarrow only suff. small g can lead to suff. metastable vacua?

Enumerability

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ · ≧ · ∽Q@

▶ Obviously infinite number without observational constraints, e.g. [AdS₅ × S⁵]_N.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

- ► Obviously infinite number without observational constraints, e.g. [AdS₅ × S⁵]_N.
- ► [Acharya-Douglas] conjecture: finite number of vacua with m_{KK} bounded below and vacuum energy bounded above.

ション ふぼう ふぼう ふほう うらの

- ► Obviously infinite number without observational constraints, e.g. [AdS₅ × S⁵]_N.
- ► [Acharya-Douglas] conjecture: finite number of vacua with *m_{KK}* bounded below and vacuum energy bounded above.
- Evidence e.g. Cheeger's finiteness theorem:

In any sequence of Riemannian manifolds with metrics such that

- 1. the sectional curvatures are all bounded above
- 2. the volume are bounded below
- *3.* the diameters are bounded above

there can only be a finite number of diffeomorphism types.

- ► Obviously infinite number without observational constraints, e.g. [AdS₅ × S⁵]_N.
- ► [Acharya-Douglas] conjecture: finite number of vacua with *m_{KK}* bounded below and vacuum energy bounded above.
- Evidence e.g. Cheeger's finiteness theorem:

In any sequence of Riemannian manifolds with metrics such that

- 1. the sectional curvatures are all bounded above
- 2. the volume are bounded below
- *3.* the diameters are bounded above

there can only be a finite number of diffeomorphism types.

 \Rightarrow E.g. potentially infinite number of CY manifolds does not matter to finiteness of quasi-realistic vacua.

◆□>
◆□>
● = ◆ = ◆ = ◆ = ◆ ●

Popular number which got worldwide press attention is 10⁵⁰⁰.

Popular number which got worldwide press attention is 10⁵⁰⁰.

Where does this number come from?

- Popular number which got worldwide press attention is 10⁵⁰⁰.
- Where does this number come from?
- Before we answer this question, let us review techniques to estimate numbers of vacua: "statistics" of string vacua

- Popular number which got worldwide press attention is 10⁵⁰⁰.
- Where does this number come from?
- Before we answer this question, let us review techniques to estimate numbers of vacua: "statistics" of string vacua
- These techniques also address more refined questions, such as number distributions of observables over parameter space.

ション ふぼう ふぼう ふほう うらの

- Popular number which got worldwide press attention is 10⁵⁰⁰.
- Where does this number come from?
- Before we answer this question, let us review techniques to estimate numbers of vacua: "statistics" of string vacua
- These techniques also address more refined questions, such as number distributions of observables over parameter space.
- Note: number densities in measurable parameter space matter more than total numbers.

ション ふぼう ふぼう ふほう うらの

◆□> <畳> <目> <目> <目> <目> <<□>

Vacuum characterized by discrete (compactification) data \vec{N} and critical point of effective potential $V_N(z)$:

$$(\vec{N},z): V'_N(z) = 0, \quad V''_N(z) > 0$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Vacuum characterized by discrete (compactification) data \vec{N} and critical point of effective potential $V_N(z)$:

$$(\vec{N},z): V'_N(z) = 0, \quad V''_N(z) > 0$$

We want to count the number of metastable vacua in a given ensemble in a certain region of parameter space:

$$\mathcal{N}_{vac}(z \in \mathcal{S}) = \sum_{\vec{N}} \int_{\mathcal{S}} d^n z \, \delta^n(V'_N(z)) \, |\det V''_N(z)|$$

ション ふぼう ふぼう ふほう うらの

Vacuum characterized by discrete (compactification) data \vec{N} and critical point of effective potential $V_N(z)$:

$$(\vec{N},z): V'_N(z) = 0, \quad V''_N(z) > 0$$

We want to count the number of metastable vacua in a given ensemble in a certain region of parameter space:

$$\begin{aligned} \mathcal{N}_{\mathsf{vac}}(z \in \mathcal{S}) &= \sum_{\vec{N}} \int_{\mathcal{S}} d^n z \, \delta^n(V_N'(z)) \, | \, \det V_N''(z) | \\ &= \int_{\mathcal{S}} d^n z \, \rho(z) \end{aligned}$$

with

$$\rho(z) = \sum_{\vec{N}} \delta^n(V'_N(z)) |\det V''_N(z)|$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

Vacuum characterized by discrete (compactification) data \vec{N} and critical point of effective potential $V_N(z)$:

$$(\vec{N},z): V'_N(z) = 0, \quad V''_N(z) > 0$$

We want to count the number of metastable vacua in a given ensemble in a certain region of parameter space:

$$\begin{aligned} \mathcal{N}_{\mathsf{vac}}(z \in \mathcal{S}) &= \sum_{\vec{N}} \int_{\mathcal{S}} d^n z \, \delta^n(V_N'(z)) \, | \, \det V_N''(z) | \\ &= \int_{\mathcal{S}} d^n z \, \rho(z) \end{aligned}$$

with

$$\rho(z) = \sum_{\vec{N}} \delta^n(V'_N(z)) |\det V''_N(z)|$$

 \rightarrow not very practical; need some more structure \pm approx.

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$

 $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$.

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$ $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$. At any fixed *z*, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y]_z$

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$ $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$. At any fixed z, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y]_z$

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$ $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$. At any fixed *z*, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y]_z \rightarrow$ continuous approximation

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$ $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$. At any fixed *z*, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y]_z \rightarrow$ continuous approximation

$$\Rightarrow \rho(z) = \int d\mu_0[W, F, M, Y]_z f(W, F, M, Y)_z$$

If $V_N = e^K (|DW_N|^2 - 3|W_N|^2)$ $\Rightarrow V'_N(z)$ and $V''_N(z)$ can be expressed in terms of $W \equiv W_N(z)$, $F_A \equiv D_A W_N(z)$, $M_{AB} \equiv D_A D_B W_N(z)$, $Y_{ABC} \equiv D_A D_B D_C W_N(z)$. At any fixed *z*, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y]_z \rightarrow$ continuous approximation

 $\Rightarrow \rho(z) = \int d\mu_0[W, F, M, Y]_z f(W, F, M, Y)_z \rightarrow \text{finite dim. int!}$

) < (~

Toy example

Type IIB on rigid CY (\Rightarrow only dilaton-axion τ).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Toy example

Type IIB on rigid CY (\Rightarrow only dilaton-axion τ).

> Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so

 $\mathcal{N}_{vac} \sim 10^{500}$

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so $\mathcal{N}_{vac} \sim 10^{500}$

 \rightsquigarrow Infamous number is just from illustrative example...

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so $\mathcal{N}_{vac} \sim 10^{500}$

 \rightsquigarrow Infamous number is just from illustrative example... Other examples can be constructed with $\mathcal{N}_{vac} \sim 10^{5000}$.

ション ふぼう ふぼう ふほう うらの

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so $\mathcal{N}_{vac} \sim 10^{500}$

 → Infamous number is just from illustrative example... Other examples can be constructed with N_{vac} ~ 10⁵⁰⁰⁰.
 C.c. Λ = -3|W|² uniformly distributed for |Λ| ≪ M⁴_p: dN[Λ] ~ dΛ

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so $\mathcal{N}_{vac} \sim 10^{500}$

 → Infamous number is just from illustrative example... Other examples can be constructed with N_{vac} ~ 10⁵⁰⁰⁰.
 C.c. Λ = -3|W|² uniformly distributed for |Λ| ≪ M⁴_p: dN[Λ] ~ dΛ

 \Rightarrow smallest c.c. $\sim M_s^4/\mathcal{N}_{vac}$.

• Number of flux vacua in region S of moduli space

$$\mathcal{N}_{\mathcal{S}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{S}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

where $L_* = \chi(X_4)/24$.

Example [Giryavets-Kachru-Tripathy-Trivedi]: $X_3 = CY$ hypersurface in WP[1, 1, 1, 1, 4], $X_4 = CY$ hypersurface in WP[1, 1, 1, 1, 8, 12]. Has $\chi/24 = 972$, $b_3 = 300$, so $\mathcal{N}_{vac} \sim 10^{500}$

 → Infamous number is just from illustrative example... Other examples can be constructed with N_{vac} ~ 10⁵⁰⁰⁰.
 C.c. Λ = -3|W|² uniformly distributed for |Λ| ≪ M⁴_p: dN[Λ] ~ dΛ

 \Rightarrow smallest c.c. $\sim M_s^4/\mathcal{N}_{vac}$.

• String coupling g_s : uniformly distributed.

Other features of distributions of IIB flux vacua

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲□▶ ▲
Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

ightarrow Relation to dual YM coupling: $|z| \sim e^{-b/g_{YM}^2}$

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

 \rightarrow Relation to dual YM coupling: $|z|\sim e^{-b/g^2_{YM}} \Rightarrow$ uniform: $d\mathcal{N}\sim dg^2_{YM}$

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

 \to Relation to dual YM coupling: $|z|\sim e^{-b/g_{YM}^2} \Rightarrow$ uniform: $d\mathcal{N}\sim dg_{YM}^2$

Behavior near other singularities similar [Eguchi].

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

 \rightarrow Relation to dual YM coupling: $|z|\sim e^{-b/g_{YM}^2}\Rightarrow$ uniform: $d\mathcal{N}\sim dg_{YM}^2$

Behavior near other singularities similar [Eguchi].

Large volumes strongly suppressed:

$$d\mathcal{N}[V] \sim e^{-cV^{2/3}}d(V^{2/3})$$

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

 \rightarrow Relation to dual YM coupling: $|z|\sim e^{-b/g_{YM}^2}\Rightarrow$ uniform: $d\mathcal{N}\sim dg_{YM}^2$

Behavior near other singularities similar [Eguchi].

Large volumes strongly suppressed:

$$d\mathcal{N}[V] \sim e^{-cV^{2/3}}d(V^{2/3})$$
• F-breaking vacua, $F =: M_{susy}^2 \ll M_p^2$, for $\Lambda \sim 0$ or $\Lambda > 0$:
 $d\mathcal{N}[F,\Lambda] \sim F^5 dF d\Lambda$

◆□> <個> <目> <目> <目> <000</p>

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|z|] \sim rac{d|z|}{|z|(\log|z|)^2}$$

 \to Relation to dual YM coupling: $|z|\sim e^{-b/g_{YM}^2} \Rightarrow$ uniform: $d\mathcal{N}\sim dg_{YM}^2$

Behavior near other singularities similar [Eguchi].

Large volumes strongly suppressed:

$$d\mathcal{N}[V] \sim e^{-cV^{2/3}}d(V^{2/3})$$

$$\blacktriangleright \text{ F-breaking vacua, } F =: M_{susy}^2 \ll M_p^2, \text{ for } \Lambda \sim 0 \text{ or } \Lambda > 0:$$

$$d\mathcal{N}[F,\Lambda] \sim F^5 dF d\Lambda$$

 \rightarrow low breaking scale "disfavored" (but much less than naive guess dF^{2n})

Statistics of gauge groups, particle spectra, ...

Statistics of intersecting brane models [Gmeiner-Blumenhagen-Honecker-Lüst-Weigand, Gmeiner, Dijkstra-Huiszoon-Schellekens, Dienes]:

- Finite number of intersecting brane models in given background.
- No significant correlations between gauge groups, matter representations, number of generations etc.

Number of "standard models": about one in a billion.

Lessons: are quasi-realistic string vacua enumerable?

▲□▶ <圖▶ <필▶ <필▶ < 필▶ <

Lessons: are quasi-realistic string vacua enumerable?

We don't know, but there is no evidence against it. Nontrivial finiteness results indicate yes, in principle.

Complexity

◆□▶ <圖▶ < ≧▶ < ≧▶ = ○○○○</p>

2026: string theory under full control!

Imagine that we have a systematic classification of all vacua, and that we can compute for each vacuum every low energy quantity to very high accuracy.

2026: string theory under full control!

Imagine that we have a systematic classification of all vacua, and that we can compute for each vacuum every low energy quantity to very high accuracy.

Simple model for matching observable data with discrete microscopic data

E.g. cosmological constant in Bousso-Polchinski model:

$$\Lambda(N) = -\Lambda_0 + \sum_{ij} g_{ij} N^i N^j$$

ション ふぼう ふぼう ふほう うらの

with flux $N \in \mathbb{Z}^{K}$.

Simple model for matching observable data with discrete microscopic data

E.g. cosmological constant in Bousso-Polchinski model:

$$\Lambda(N) = -\Lambda_0 + \sum_{ij} g_{ij} N^i N^j$$

ション ふぼう ふぼう ふほう うらの

with flux $N \in \mathbb{Z}^{K}$. Example question: $\exists N : 0 \leq \Lambda(N) < \epsilon$?

Simple model for matching observable data with discrete microscopic data

E.g. cosmological constant in Bousso-Polchinski model:

$$\Lambda(N) = -\Lambda_0 + \sum_{ij} g_{ij} N^i N^j$$

with flux $N \in \mathbb{Z}^{K}$. Example question: $\exists N : 0 \leq \Lambda(N) < \epsilon$?

Can be extended to more complicated models, other parameters, and some

Is this a tractable problem?

- Tractable = can we solve it before the sun burns out?
- Such questions are addressed in computational complexity theory.

▶ P = yes/no problems solvable in polynomial time (e.g. is n₁ × n₂ = n₃?, primality)

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.

NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling salesman, n × n Sudoku, ...)

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.
- NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling salesman, n × n Sudoku, ...)

So: if one NP-complete problem turns out to be in P, then NP = P.

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.
- NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling salesman, n × n Sudoku, ...)

So: if *one* NP-complete problem turns out to be in *P*, then NP = P. Widely believed: NP \neq P, but no proof to date (Clay prize problem).

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.
- NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling salesman, n × n Sudoku, ...)

So: if *one* NP-complete problem turns out to be in *P*, then NP = P. Widely believed: NP \neq P, but no proof to date (Clay prize problem). Therefore: expect no P algorithms for NP-complete problems.

 $\blacktriangleright \ \mathsf{Clear:} \ \mathsf{BP} \in \mathsf{NP}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - の�?

- Clear: $BP \in NP$
- Bad news: BP is NP-complete

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.
- ▶ Standard subset sum: Given $t, g_1, \ldots, g_N \in \mathbb{Z}$,

$$\exists k_i \in \{0,1\} : \sum_i k_i g_i = t?$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.
- ▶ Standard subset sum: Given $t, g_1, \ldots, g_N \in \mathbb{Z}$,

$$\exists k_i \in \{0,1\} : \sum_i k_i g_i = t?$$

▶ Modified (bit still NPC) version: we are "promised" that

$$\sum_{i} k_{i}g_{i} = t \text{ with } k_{i} \in \mathbb{Z}^{+} \quad \Rightarrow \quad k_{i} \in \{0,1\}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.
- ▶ Standard subset sum: Given $t, g_1, \ldots, g_N \in \mathbb{Z}$,

$$\exists k_i \in \{0,1\} : \sum_i k_i g_i = t?$$

Modified (bit still NPC) version: we are "promised" that

$$\sum_{i} k_{i}g_{i} = t \text{ with } k_{i} \in \mathbb{Z}^{+} \quad \Rightarrow \quad k_{i} \in \{0, 1\}$$

▶ Reduction to BP: take BP with $g_{ij} = g_i \delta_{ij}$, $\Lambda_0 = t$, $\epsilon = 1$:

$$\exists N_i \in \mathbb{Z} : 0 \leq -t + \sum_i N_i^2 g_i < 1?$$

◆□▶ <圖▶ < E▶ < E▶ = 2000</p>

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.
- ▶ Standard subset sum: Given $t, g_1, \ldots, g_N \in \mathbb{Z}$,

$$\exists k_i \in \{0,1\} : \sum_i k_i g_i = t?$$

Modified (bit still NPC) version: we are "promised" that

$$\sum_i k_i g_i = t ext{ with } k_i \in \mathbb{Z}^+ \quad \Rightarrow \quad k_i \in \{0,1\}$$

▶ Reduction to BP: take BP with $g_{ij} = g_i \delta_{ij}$, $\Lambda_0 = t$, $\epsilon = 1$:

$$\exists N_i \in \mathbb{Z} : 0 \leq -t + \sum_i N_i^2 g_i < 1?$$

 \rightsquigarrow equivalent to modified subset sum.

- Clear: $BP \in NP$
- Bad news: BP is NP-complete
- Proof: by mapping version of subset sum to it.
- ▶ Standard subset sum: Given $t, g_1, \ldots, g_N \in \mathbb{Z}$,

$$\exists k_i \in \{0,1\} : \sum_i k_i g_i = t?$$

Modified (bit still NPC) version: we are "promised" that

$$\sum_i k_i g_i = t ext{ with } k_i \in \mathbb{Z}^+ \quad \Rightarrow \quad k_i \in \{0,1\}$$

▶ Reduction to BP: take BP with $g_{ij} = g_i \delta_{ij}$, $\Lambda_0 = t$, $\epsilon = 1$:

$$\exists N_i \in \mathbb{Z} : 0 \leq -t + \sum_i N_i^2 g_i < 1?$$

 \rightsquigarrow equivalent to modified subset sum.

(Hard part is to show that promise version of subset sum is still NP-complete.)

Physical intuition

Exponentially many local minima for local relaxation process of $|\Lambda - \epsilon/2|$ with steps $\Delta N_i = \pm \delta_{ki}$, say for $g_{ij} \equiv g_i \delta_{ij}$:

$$|\Delta\Lambda|=g_k|1\pm 2N^k|>g_k.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへ(

Physical intuition

Exponentially many local minima for local relaxation process of $|\Lambda - \epsilon/2|$ with steps $\Delta N_i = \pm \delta_{ki}$, say for $g_{ij} \equiv g_i \delta_{ij}$:

$$|\Delta\Lambda|=g_k|1\pm 2N^k|>g_k.$$

⇒ any $|\Lambda - \epsilon/2| < \min_k g_k/2$ is local minimum, but if $\epsilon \ll \min_k g_k$, one generically gets stuck far from target range.

Simulated annealing

Simulated annealing

Simulated annealing: add thermal noise to get out of local minima and gradually cool.

(日) (同) (日) (日) (日)

Simulated annealing

- Simulated annealing: add thermal noise to get out of local minima and gradually cool.
- ► E.g. metropolis algorithm ~→ converges to Boltzman distribution, so will always find target range, but only guaranteed in time exponential in problem size.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

◆□> <圖> < E> < E> 至 のQ@

Parallel processing? (P)

◆□> <圖> < E> < E> 至 のQ@

▶ Parallel processing? (P) ×

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×
- Polynomial time quantum computing? (BQP)

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×
- Polynomial time quantum computing? (BQP) ×

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×
- Polynomial time quantum computing? (BQP) ×
- Other known physical models of computation?

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×
- Polynomial time quantum computing? (BQP) ×
- Other known physical models of computation? ×

Lessons: is matching observable data to microscopic data tractable?

★□> ★圖> ★目> ★目> 目 のQQ

Lessons: is matching observable data to microscopic data tractable?

Well...

 NP-completeness is asymptotic, worst case notion. Particular instances may turn out easy. Cryptographic codes do get broken.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- NP-completeness is asymptotic, worst case notion. Particular instances may turn out easy. Cryptographic codes do get broken.
- Some problems may be more tractable than matching continuous parameters, e.g. matching particle spectra (?) E.g. SU(3) × SU(2) × U(1) can be deduced in polynomial time from rudimentary data [Coleman's thesis].

- NP-completeness is asymptotic, worst case notion. Particular instances may turn out easy. Cryptographic codes do get broken.
- Some problems may be more tractable than matching continuous parameters, e.g. matching particle spectra (?) E.g. SU(3) × SU(2) × U(1) can be deduced in polynomial time from rudimentary data [Coleman's thesis].
- String theory may have much more (as yet hidden) structure and underlying simplicity than current landscape models suggest.

- NP-completeness is asymptotic, worst case notion. Particular instances may turn out easy. Cryptographic codes do get broken.
- Some problems may be more tractable than matching continuous parameters, e.g. matching particle spectra (?) E.g. SU(3) × SU(2) × U(1) can be deduced in polynomial time from rudimentary data [Coleman's thesis].
- String theory may have much more (as yet hidden) structure and underlying simplicity than current landscape models suggest.
- Number distributions together with experimental input could lead to exclusion of certain future measurable properties without need to determine our vacuum.

Flattening the landscape?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Flattening the landscape?

Controlled constructions of string vacua are tricky and explicit examples sparse ~> maybe overestimate size?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

Flattening the landscape?

- Controlled constructions of string vacua are tricky and explicit examples sparse ~> maybe overestimate size?
- Relatively unexplored stability issues: large number of potential decay channels [Kachru-Pearson-Verlinde, Frey-Lipper-Williams, Ceresole-Dall'Agata-Giryavets-Kallosh-Linde]

Example: thin wall bubble nucleation

Bubble nucleation rate per unit spacetime volume for a bubble with tension T, cosmological constant Λ_o outside and cosmological constant Λ_i inside [Brown-Teitelboim,Coleman-De Luccia] ($M_p \equiv 1$):

$$\Gamma \sim e^{-12\pi^2 B}$$

$$B = \frac{T\rho^3}{6} - \frac{1 - \sigma_i (1 - \frac{\Lambda_i \rho^2}{3})^{3/2}}{\Lambda_i} + \frac{1 - \sigma_o (1 - \frac{\Lambda_o \rho^2}{3})^{3/2}}{\Lambda_o}$$

 $\sigma_{i,o} = \text{sign} \left[\pm 3 T^2 + 4(\Lambda_o - \Lambda_i) \right]$, $\rho = \text{bubble radius, evaluated at stationary point of } B(\rho)$:

$$\rho = \frac{12 T}{[9 T^4 + 24 T^2 (\Lambda_i + \Lambda_o) + 16 (\Lambda_i - \Lambda_o)^2]^{1/2}}$$

Example: thin wall bubble nucleation

Bubble nucleation rate per unit spacetime volume for a bubble with tension T, cosmological constant Λ_o outside and cosmological constant Λ_i inside [Brown-Teitelboim,Coleman-De Luccia] ($M_p \equiv 1$):

$$\Gamma \sim e^{-12\pi^2 B}$$

$$B = \frac{T\rho^3}{6} - \frac{1 - \sigma_i (1 - \frac{\Lambda_i \rho^2}{3})^{3/2}}{\Lambda_i} + \frac{1 - \sigma_o (1 - \frac{\Lambda_o \rho^2}{3})^{3/2}}{\Lambda_o}$$

 $\sigma_{i,o} = \text{sign} \left[\pm 3 T^2 + 4(\Lambda_o - \Lambda_i) \right]$, $\rho = \text{bubble radius, evaluated at stationary point of } B(\rho)$:

$$\rho = \frac{12 T}{[9 T^4 + 24 T^2 (\Lambda_i + \Lambda_o) + 16 (\Lambda_i - \Lambda_o)^2]^{1/2}}.$$

Generically $\Gamma \sim e^{-cV^2}$, but if just one out of 10^{500} or so decay channels is accidentally not suppressed, vacuum is not metastable...

Probability

◆□> <圖> < E> < E> E のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ション ふぼう ふぼう ふほう うらの

Can't we just *compute* our vacuum *ab initio* from cosmological selection principles?

- Can't we just *compute* our vacuum *ab initio* from cosmological selection principles?
- ► Example: (unrealistic) Hartle-Hawking measure selects smallest positive Λ with overwhelming probability. ⇒ No need to match data, just find the one with smallest Λ!

- Can't we just *compute* our vacuum *ab initio* from cosmological selection principles?
- ► Example: (unrealistic) Hartle-Hawking measure selects smallest positive Λ with overwhelming probability. ⇒ No need to match data, just find the one with smallest Λ!
- Problem: finding minimal Λ(N) in BP is even harder than NP-complete!

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲□ ● ○○○

Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)

- Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)
- ▶ Natural measure: number of "observers" (volume, stars, ...)

- Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)
- ▶ Natural measure: number of "observers" (volume, stars, ...)
- Notorious problem: ordering ambiguity due to infinities, similar to problem: "Are there more even or odd integers?":
 - Order $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$: equally many.
 - Order $\{1, 3, 2, 5, 7, 4, 9, 11, 6, ...\}$: twice as many odd.

(日) (日) (日) (日) (日) (日) (日)

- Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)
- ▶ Natural measure: number of "observers" (volume, stars, ...)
- Notorious problem: ordering ambiguity due to infinities, similar to problem: "Are there more even or odd integers?":
 - ► Order {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}: equally many.
 - Order $\{1, 3, 2, 5, 7, 4, 9, 11, 6, ...\}$: twice as many odd.

Note: similar infinity problem for "black hole maximization principle" of [Smolin], moreover reasonable interpretation leads to c.c. maximization [Vilenkin].

- Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)
- ▶ Natural measure: number of "observers" (volume, stars, ...)
- Notorious problem: ordering ambiguity due to infinities, similar to problem: "Are there more even or odd integers?":
 - ► Order {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}: equally many.
 - Order $\{1, 3, 2, 5, 7, 4, 9, 11, 6, ...\}$: twice as many odd.

Note: similar infinity problem for "black hole maximization principle" of [Smolin], moreover reasonable interpretation leads to c.c. maximization [Vilenkin].

 Recent progress: proposals with not manifestly absurd outcomes by [Vilenkin,Easter-Lim-Martin,Bousso].

- Eternal inflation gives in principle framework for computing probabilities on parameter space (cf. [Tegmark] review)
- ▶ Natural measure: number of "observers" (volume, stars, ...)
- Notorious problem: ordering ambiguity due to infinities, similar to problem: "Are there more even or odd integers?":
 - ► Order {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}: equally many.
 - Order $\{1, 3, 2, 5, 7, 4, 9, 11, 6, ...\}$: twice as many odd.

Note: similar infinity problem for "black hole maximization principle" of [Smolin], moreover reasonable interpretation leads to c.c. maximization [Vilenkin].

- Recent progress: proposals with not manifestly absurd outcomes by [Vilenkin,Easter-Lim-Martin,Bousso]. Problems:
 - not derived from first principles, so still ambiguous.
 - highly model-dependent distributions.

Conclusions

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ · ≧ · ∽Q@

We need much more work, a radical breakthrough, or another experimental shock

◆□>
◆□>
● = ◆ = >
● = ◆ ○

We need much more work, a radical breakthrough, or another experimental shock

