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Superconformal quantum mechanics on ‘puffed’
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Entropy from supersymmetric ground states

2-charge D1-D5 system in type IIB
Supersymmetric probe branes
‘Puffed’ (p, q) strings

Open problems
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D0-D4 black holes in type IIA

type IIA on CY3 ⇒ N=2 in D=4.
Consider 4D charged extremal black holes with electric
D0-brane charge q0 and magnetic D4-brane charges pA from
wrapping D4’s on CY 4-cycles (A = 1, . . . , b2)
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D0-D4 black holes in type IIA

type IIA on CY3 ⇒ N=2 in D=4.
Consider 4D charged extremal black holes with electric
D0-brane charge q0 and magnetic D4-brane charges pA from
wrapping D4’s on CY 4-cycles (A = 1, . . . , b2)

The near-horizon geometry is

AdS2 × S2 × CY3 with fluxes

X X

Attractor mechanism: the AdS2 × S2 radius R and the CY3

Kähler moduli are fixed in terms of the charges.
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GSY proposal

As a proposal for the elusive AdS2/CFT1

correspondence, GSY proposed (hep-th/0412322) to
consider the worldvolume quantum mechanics living on D0
branes in the near-horizon AdS2 × S2 × CY3 attractor
geometry
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GSY proposal

As a proposal for the elusive AdS2/CFT1

correspondence, GSY proposed (hep-th/0412322) to
consider the worldvolume quantum mechanics living on D0
branes in the near-horizon AdS2 × S2 × CY3 attractor
geometry

The (super-) isometries of the background act as
symmetries on the D0-brane Q.M. and one obtains a
superconformal quantum mechanics (SCQM) .

The entropy of the black hole is the degeneracy of
multi-particle chiral primaries in the SCQM for given
D0-charge.

There is an important subtlety in implementing this
proposal.
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‘Puffed’ D0-branes

A multi-D0-brane configuration in the attractor
background can ‘puff up’ to form a D2-brane through
the Myers effect . Two descriptions:

Fuzzy two-sphere solution of the N multi-D0-brane
action in the AdS2 × S2 × CY3 background.

D2-brane wrapping S2, with N units of worldvolume flux .
This carries no net D2-charge in the full geometry.

Microstates and near-horizon D-brane probes – p. 5/19



‘Puffed’ D0-branes

A multi-D0-brane configuration in the attractor
background can ‘puff up’ to form a D2-brane through
the Myers effect . Two descriptions:

Fuzzy two-sphere solution of the N multi-D0-brane
action in the AdS2 × S2 × CY3 background.

D2-brane wrapping S2, with N units of worldvolume flux .
This carries no net D2-charge in the full geometry.
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‘Puffed’ D0-branes

A multi-D0-brane configuration in the attractor
background can ‘puff up’ to form a D2-brane through
the Myers effect . Two descriptions:

Fuzzy two-sphere solution of the N multi-D0-brane
action in the AdS2 × S2 × CY3 background.

D2-brane wrapping S2, with N units of worldvolume flux .
This carries no net D2-charge in the full geometry.

Descriptions agree when R2/N � 1. This object is static
in global time , and preserves half of the near-horizon
supersymmetries but breaks all supersymmetries of of
the full geometry.

These horizon-wrapping membranes experience a

magnetic field on the CY due to the RR coupling
∫

C(3)
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Microstate counting

The symmetry algebra is an N=4 superconformal symmetry
algebra SU(1, 1|2)Z .

(

SL(2, R) F1

F2 SU(2)

)
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Microstate counting

The symmetry algebra is an N=4 superconformal symmetry
algebra SU(1, 1|2)Z .

(

SL(2, R) F1

F2 SU(2)

)

Chiral primaries are in 1-to-1 correspondence with
lowest Landau levels on the CY

The asymptotic degeneracy of multiparticle chiral
primaries with total D0-charge N is
(D ≡ 1

6CABCp
ApBpC 6= 0)

log dN ' 2π
√
ND + subleading
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Small black holes

Subleading terms do not match with known corrections
to the entropy. Previous analysis breaks down when D
becomes small: higher derivative corrections become
important. We will now consider ‘small’ black holes with
D = 0. These have vanishing horizon area in the leading
supergravity approximation . Higher derivative corrections
give rise to a nonzero horizon area.
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important. We will now consider ‘small’ black holes with
D = 0. These have vanishing horizon area in the leading
supergravity approximation . Higher derivative corrections
give rise to a nonzero horizon area.

We consider black holes made up out of q0 D0-branes

and p1 D4-branes in compactifications on T 2 ×M , where the
D4’s are wrapped on M = K3 or T 4.
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Small black holes

Subleading terms do not match with known corrections
to the entropy. Previous analysis breaks down when D
becomes small: higher derivative corrections become
important. We will now consider ‘small’ black holes with
D = 0. These have vanishing horizon area in the leading
supergravity approximation . Higher derivative corrections
give rise to a nonzero horizon area.

We consider black holes made up out of q0 D0-branes

and p1 D4-branes in compactifications on T 2 ×M , where the
D4’s are wrapped on M = K3 or T 4.

Prepotential , including leading correction (for M = K3):

F = −1

2
CijX

iXjX
1

X0
− 1

64
Â
X1

X0
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Attractor geometry

The near-horizon geometry is now
AdS2 × S2 × T 2 ×M with fluxes

X X X

ds2 = R2(−r2dt2 +
dr2

r2
+ dθ2 + sin2 θdφ2) + 2dzdz̄+ 2rgab̄dz

adz̄b̄

F (4) =
p1

4π
sin θdθ ∧ dφ ∧ ω1; F (2) =

R

gs

dr ∧ dt

(gab̄: metric on M ; ω1: vol. form on T 2; R = gs

2π

√

p1

|q0|
)
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Small BH quantum mechanics

As in GSY, we consider D2-branes with N units of
D0-flux and wrapped on S2. Terms contributing to the
action:

S = T2

∫

d3σe−φ
√

− det(G+ F )+T2

∫

D2
C(3)+T2

∫

D2
F∧C(1)

This leads to the bosonic Hamiltonian (ξ = 1/
√
r):

H =
1

8RT
P 2

ξ +
R

Tξ2
(Pz − Az)(Pz̄ − Az̄) +

32π4R5

g2
sNξ

2

+
Q

T
Pag

ab̄Pb̄; dA ≡ 2πp1ω1
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D0-flux and wrapped on S2. Terms contributing to the
action:

S = T2

∫

d3σe−φ
√

− det(G+ F )+T2

∫

D2
C(3)+T2

∫

D2
F∧C(1)

This leads to the bosonic Hamiltonian (ξ = 1/
√
r):

H =
1

8RT
P 2

ξ +
R

Tξ2
(Pz − Az)(Pz̄ − Az̄) +

32π4R5

g2
sNξ

2

+
Q

T
Pag

ab̄Pb̄; dA ≡ 2πp1ω1

Note: the AdS2 × S2 × T 2 part and the M part decouple!

Microstates and near-horizon D-brane probes – p. 9/19



Symmetry algebra

The full worldvolume theory includes 16 fermions .
Including fermions, the symmetry group splits into a
product of

N=4 SU(1, 1|2)Z superconformal quantum mechanics

(SCQM) involving the AdS2 × S2 × T 2 coordinates
N=4 supersymmetric quantum mechanics (SQM) involving
the M coordinates.
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Symmetry algebra

The full worldvolume theory includes 16 fermions .
Including fermions, the symmetry group splits into a
product of

N=4 SU(1, 1|2)Z superconformal quantum mechanics

(SCQM) involving the AdS2 × S2 × T 2 coordinates
N=4 supersymmetric quantum mechanics (SQM) involving
the M coordinates.

The ground states are tensor products of chiral primaries
of N=4 SCQM and susy ground states of N=4 SQM.
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Counting ground states

N=4 SCQM chiral primaries are in 1-to-1 correspondence
with lowest Landau levels on T 2.
=⇒ there are

∫

T 2 dA = p1 (bosonic) chiral primaries.
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Counting ground states

N=4 SCQM chiral primaries are in 1-to-1 correspondence
with lowest Landau levels on T 2.
=⇒ there are

∫

T 2 dA = p1 (bosonic) chiral primaries.

N=4 SQM ground states are in 1-to-1 correspondence with
Dolbeault cohomology classes .
=⇒ on M = K3: 24 bosonic susy ground states
=⇒ on M = T 4: 8 bosonic + 8 fermionic ground states.
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Counting ground states

N=4 SCQM chiral primaries are in 1-to-1 correspondence
with lowest Landau levels on T 2.
=⇒ there are

∫

T 2 dA = p1 (bosonic) chiral primaries.

N=4 SQM ground states are in 1-to-1 correspondence with
Dolbeault cohomology classes .
=⇒ on M = K3: 24 bosonic susy ground states
=⇒ on M = T 4: 8 bosonic + 8 fermionic ground states.

Since the number of ground states doesn’t depend on
the background D0-charge q0, one can take q0 → 0 so
that all of the D0 charge comes from the probes and is equal
to N .
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Counting multi-particle ground states

on M = K3 : Z =
∑

dNq
N =

∏

n (1− qn)−24p1

log dN ' 4π
√

Np1 + . . .

Microstates and near-horizon D-brane probes – p. 12/19



Counting multi-particle ground states

on M = K3 : Z =
∑

dNq
N =

∏

n (1− qn)−24p1

log dN ' 4π
√

Np1 + . . .

on M = T 4 : Z =
∑

dNq
N =

∏

n

(

1+qn

1−qn

)8p1

log dN ' 2
√

2π
√

Np1 + . . .
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Counting multi-particle ground states

on M = K3 : Z =
∑

dNq
N =

∏

n (1− qn)−24p1

log dN ' 4π
√

Np1 + . . .

on M = T 4 : Z =
∑

dNq
N =

∏

n

(

1+qn

1−qn

)8p1

log dN ' 2
√

2π
√

Np1 + . . .

Leading term agrees with black hole entropy in both cases
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The D1-D5 system

Consider Q1 D1-branes and Q5 D5-branes wrapped on
M = K3 or T 4⇒ related to the D0-D4 black hole by
T-duality + lift to 6 dimensions. We would like to follow a
GSY-inspired approach and identify near-horizon
supersymmetric probe branes .
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The D1-D5 system

Consider Q1 D1-branes and Q5 D5-branes wrapped on
M = K3 or T 4⇒ related to the D0-D4 black hole by
T-duality + lift to 6 dimensions. We would like to follow a
GSY-inspired approach and identify near-horizon
supersymmetric probe branes .

Near horizon geometry is now AdS3 × S3 ×M . In
Poincaré coordinates:

ds2 = r1r5[u
2(−dt2 + dx2) +

du2

u2

+dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)] +
r1
r5
ds2M

F (3) =
2r25
g

[udt ∧ dx ∧ du+ sin2 ψ sin θdψ ∧ dθ ∧ dφ]
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Supersymmetric AdS2 branes

We considered brane configurations that preserve
near-horizon supersymmetries and span an AdS2 subspace
within AdS3:

u =
C

x

Such configurations are static w.r.t. global time .

u

x
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Supersymmetric AdS2 branes

The near-horizon geometry preserves 16
supersymmetries . Killing spinors ε come in two kinds:

8 Poincaré susies: ε =
√
uR(ψ, θ, φ)ε+

8 enhanced susies:
ε =

(

1√
u

+
√
u(tΓ02 − xΓ12)

)

R(ψ, θ, φ)ε−
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Supersymmetric AdS2 branes

The near-horizon geometry preserves 16
supersymmetries . Killing spinors ε come in two kinds:

8 Poincaré susies: ε =
√
uR(ψ, θ, φ)ε+

8 enhanced susies:
ε =

(

1√
u

+
√
u(tΓ02 − xΓ12)

)

R(ψ, θ, φ)ε−

Condition for brane probe to preserve some
supersymmetry :

(1− Γ)ε = 0

where
Γ ( trΓ = 0, Γ2 = 1) is the operator entering in the
κ-symmetry transformation rule on the Dp-brane
ε are the Killing spinors of the background pulled
back to the world-volume.

Microstates and near-horizon D-brane probes – p. 15/19



We allow branes to carry worldvolume flux F . Electric
part induces F1 charge while magnetic part induces lower
D-brane charges .
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We allow branes to carry worldvolume flux F . Electric
part induces F1 charge while magnetic part induces lower
D-brane charges .

Results of the analysis:

brane AdS3 S3 M restrictions

D1 AdS2 · ·
D3 AdS2 · 2-cycle Σ Σ holomorphic
D5 AdS2 · M

D3 AdS2 S2 ·
D7 AdS2 S2 M F|M antiselfdual
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We allow branes to carry worldvolume flux F . Electric
part induces F1 charge while magnetic part induces lower
D-brane charges .

Results of the analysis:

brane AdS3 S3 M restrictions

D1 AdS2 · ·
D3 AdS2 · 2-cycle Σ Σ holomorphic
D5 AdS2 · M

D3 AdS2 S2 ·
D7 AdS2 S2 M F|M antiselfdual

All solutions preserve half of the near horizon susies and
half of the Poincar é susies
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Puffed (p, q) strings

Let’s focus on the AdS2 × S2 brane in the classification
above. The S2 is contractible, hence it carries no net
D3-charge . The S2 is stabilized by turning on
worldvolume electric flux due to the coupling

∫

F ∧ C2.
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F ∧ C2.

Allowing both worldvolume electric field Ftx and and
magnetic field Fθφ, this object carries fundamental string

charge q and D-string charge p.
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Puffed (p, q) strings

Let’s focus on the AdS2 × S2 brane in the classification
above. The S2 is contractible, hence it carries no net
D3-charge . The S2 is stabilized by turning on
worldvolume electric flux due to the coupling

∫

F ∧ C2.

Allowing both worldvolume electric field Ftx and and
magnetic field Fθφ, this object carries fundamental string

charge q and D-string charge p.

Blowup can be shown explicitly from the Myers action
for multi-D1 branes

Related branes have been considered
p = 0 case: Pawelczyk, Rey: hep-th/0007154
S-dual version: Bachas, Petropoulos:
hep-th/0012234
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Equation for ψ: ψ = π q
Q5

(radius of S2 is sinψ).
⇒ ‘Exclusion bound’ on the number of fundamental
strings: q ≤ Q5

Tension: T = 2π

√

(pe−φ)2 +
(

Q5

π sin πq
Q5

)2

Different values of q preserve the same susies.

Microstates and near-horizon D-brane probes – p. 18/19



Equation for ψ: ψ = π q
Q5

(radius of S2 is sinψ).
⇒ ‘Exclusion bound’ on the number of fundamental
strings: q ≤ Q5

Tension: T = 2π

√

(pe−φ)2 +
(

Q5

π sin πq
Q5

)2

Different values of q preserve the same susies.

Compare to D0-D4 black hole:

D0-D4 on T 2 ×M D1-D5 on M
AdS2 × S2 × T 2 ×M AdS3 × S3 ×M

‘puffed’ D0 brane ←→ ‘puffed’ (p, q) string
(D2 on S2) (D3 along AdS2 × S2)

Q4 LLL ground states ←→ Q5 values of q
degenerate in energy ? not degenerate
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Open questions

Subleading corrections to the black hole entropy

Microstates and near-horizon D-brane probes – p. 19/19



Open questions

Subleading corrections to the black hole entropy

Application of GSY proposal to other black holes, such
as nonsupersymmetric attractor black holes

Microstates and near-horizon D-brane probes – p. 19/19



Open questions

Subleading corrections to the black hole entropy

Application of GSY proposal to other black holes, such
as nonsupersymmetric attractor black holes

Understanding of the AdS2 branes in D1-D5 system from
the dual gauge theory point of view
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