Microstates and near-horizon D-brane probes Joris Raeymaekers Tokyo University

RTN network meeting, October 9, 2006

- S. Kim and J.R., Superconformal quantum mechanics of small black holes, hep-th/0505176
- P.K. Yogendran and J.R., Supersymmetric D-branes in the D1-D5 background, hep-th/0607150
 - J.R., work in progress

Gaiotto-Strominger-Yin (GSY) proposal for entropy counting from superconformal quantum mechanics

- Gaiotto-Strominger-Yin (GSY) proposal for entropy counting from superconformal quantum mechanics
- Application to 2-charge 'small' D0-D4 black holes in type IIA
 - Superconformal quantum mechanics on 'puffed' D0-branes
 - Entropy from supersymmetric ground states

- Gaiotto-Strominger-Yin (GSY) proposal for entropy counting from superconformal quantum mechanics
- Application to 2-charge 'small' D0-D4 black holes in type IIA
 - Superconformal quantum mechanics on 'puffed' D0-branes
 - Entropy from supersymmetric ground states
- 2-charge D1-D5 system in type IIB
 - Supersymmetric probe branes
 - 'Puffed' (p,q) strings

- Gaiotto-Strominger-Yin (GSY) proposal for entropy counting from superconformal quantum mechanics
- Application to 2-charge 'small' D0-D4 black holes in type IIA
 - Superconformal quantum mechanics on 'puffed' D0-branes
 - Entropy from supersymmetric ground states
- 2-charge D1-D5 system in type IIB
 - Supersymmetric probe branes
 - 'Puffed' (p,q) strings
- Open problems

D0-D4 black holes in type IIA

• type IIA on $CY_3 \Rightarrow N=2$ in D=4. Consider 4D charged extremal black holes with electric D0-brane charge q_0 and magnetic D4-brane charges p^A from wrapping D4's on CY 4-cycles ($A = 1, ..., b^2$)

D0-D4 black holes in type IIA

• type IIA on $CY_3 \Rightarrow N=2$ in D=4. Consider 4D charged extremal black holes with electric D0-brane charge q_0 and magnetic D4-brane charges p^A from wrapping D4's on CY 4-cycles ($A = 1, \ldots, b^2$)

The near-horizon geometry is

 $AdS_2 \times S^2 \times CY_3$ with fluxes

D0-D4 black holes in type IIA

• type IIA on $CY_3 \Rightarrow N=2$ in D=4. Consider 4D charged extremal black holes with electric D0-brane charge q_0 and magnetic D4-brane charges p^A from wrapping D4's on CY 4-cycles ($A = 1, \ldots, b^2$)

The near-horizon geometry is

 $AdS_2 \times S^2 \times CY_3$ with fluxes

Attractor mechanism: the $AdS_2 \times S^2$ radius R and the CY_3 Kähler moduli are fixed in terms of the charges.

• As a proposal for the elusive AdS_2/CFT_1 correspondence, GSY proposed (hep-th/0412322) to consider the worldvolume quantum mechanics living on D0 branes in the near-horizon $AdS_2 \times S^2 \times CY_3$ attractor geometry

- As a proposal for the elusive AdS_2/CFT_1 correspondence, GSY proposed (hep-th/0412322) to consider the worldvolume quantum mechanics living on D0 branes in the near-horizon $AdS_2 \times S^2 \times CY_3$ attractor geometry
- The (super-) isometries of the background act as symmetries on the D0-brane Q.M. and one obtains a superconformal quantum mechanics (SCQM).

- As a proposal for the elusive AdS_2/CFT_1 correspondence, GSY proposed (hep-th/0412322) to consider the worldvolume quantum mechanics living on D0 branes in the near-horizon $AdS_2 \times S^2 \times CY_3$ attractor geometry
- The (super-) isometries of the background act as symmetries on the D0-brane Q.M. and one obtains a superconformal quantum mechanics (SCQM).
- The entropy of the black hole is the degeneracy of multi-particle chiral primaries in the SCQM for given D0-charge.

- As a proposal for the elusive AdS_2/CFT_1 correspondence, GSY proposed (hep-th/0412322) to consider the worldvolume quantum mechanics living on D0 branes in the near-horizon $AdS_2 \times S^2 \times CY_3$ attractor geometry
- The (super-) isometries of the background act as symmetries on the D0-brane Q.M. and one obtains a superconformal quantum mechanics (SCQM).
- The entropy of the black hole is the degeneracy of multi-particle chiral primaries in the SCQM for given D0-charge.
- There is an important subtlety in implementing this proposal.

'Puffed' D0-branes

- A multi-D0-brane configuration in the attractor background can 'puff up' to form a D2-brane through the Myers effect. Two descriptions:
 - Fuzzy two-sphere solution of the *N* multi-D0-brane action in the $AdS_2 \times S^2 \times CY_3$ background.
 - D2-brane wrapping S^2 , with N units of worldvolume flux. This carries no net D2-charge in the full geometry.

'Puffed' D0-branes

- A multi-D0-brane configuration in the attractor background can 'puff up' to form a D2-brane through the Myers effect. Two descriptions:
 - Fuzzy two-sphere solution of the *N* multi-D0-brane action in the $AdS_2 \times S^2 \times CY_3$ background.
 - D2-brane wrapping S^2 , with N units of worldvolume flux. This carries no net D2-charge in the full geometry.
- Descriptions agree when $R^2/N \ll 1$. This object is static in global time, and preserves half of the near-horizon supersymmetries but breaks all supersymmetries of of the full geometry.

'Puffed' D0-branes

- A multi-D0-brane configuration in the attractor background can 'puff up' to form a D2-brane through the Myers effect. Two descriptions:
 - Fuzzy two-sphere solution of the *N* multi-D0-brane action in the $AdS_2 \times S^2 \times CY_3$ background.
 - D2-brane wrapping S^2 , with N units of worldvolume flux. This carries no net D2-charge in the full geometry.
- Descriptions agree when $R^2/N \ll 1$. This object is static in global time, and preserves half of the near-horizon supersymmetries but breaks all supersymmetries of of the full geometry.
- These horizon-wrapping membranes experience a magnetic field on the CY due to the RR coupling $\int C^{(3)}$

Microstate counting

• The symmetry algebra is an N=4 superconformal symmetry algebra $SU(1, 1|2)_Z$.

$$\left(\begin{array}{c|c} SL(2,R) & F_1 \\ F_2 & SU(2) \end{array}\right)$$

Microstate counting

• The symmetry algebra is an N=4 superconformal symmetry algebra $SU(1, 1|2)_Z$.

$$\left(\begin{array}{c|c}SL(2,R) & F_1\\F_2 & SU(2)\end{array}\right)$$

Chiral primaries are in 1-to-1 correspondence with lowest Landau levels on the CY

Microstate counting

• The symmetry algebra is an N=4 superconformal symmetry algebra $SU(1,1|2)_Z$.

$$\left(\begin{array}{c|c} SL(2,R) & F_1 \\ F_2 & SU(2) \end{array}\right)$$

- Chiral primaries are in 1-to-1 correspondence with lowest Landau levels on the CY
- The asymptotic degeneracy of multiparticle chiral primaries with total D0-charge N is $(D \equiv \frac{1}{6}C_{ABC}p^{A}p^{B}p^{C} \neq 0)$

$$\log d_N \simeq 2\pi \sqrt{ND} + \text{subleading}$$

Small black holes

• Subleading terms do not match with known corrections to the entropy. Previous analysis breaks down when D becomes small: higher derivative corrections become important. We will now consider 'small' black holes with D = 0. These have vanishing horizon area in the leading supergravity approximation. Higher derivative corrections give rise to a nonzero horizon area.

Small black holes

- Subleading terms do not match with known corrections to the entropy. Previous analysis breaks down when D becomes small: higher derivative corrections become important. We will now consider 'small' black holes with D = 0. These have vanishing horizon area in the leading supergravity approximation. Higher derivative corrections give rise to a nonzero horizon area.
- We consider black holes made up out of q_0 D0-branes and p^1 D4-branes in compactifications on $T^2 \times M$, where the D4's are wrapped on $M = K_3$ or T^4 .

Small black holes

- Subleading terms do not match with known corrections to the entropy. Previous analysis breaks down when D becomes small: higher derivative corrections become important. We will now consider 'small' black holes with D = 0. These have vanishing horizon area in the leading supergravity approximation. Higher derivative corrections give rise to a nonzero horizon area.
- We consider black holes made up out of q_0 D0-branes and p^1 D4-branes in compactifications on $T^2 \times M$, where the D4's are wrapped on $M = K_3$ or T^4 .
- **Prepotential**, including leading correction (for M = K3):

$$F = -\frac{1}{2}C_{ij}X^{i}X^{j}\frac{X^{1}}{X^{0}} - \frac{1}{64}\hat{A}\frac{X^{1}}{X^{0}}$$

Attractor geometry

The near-horizon geometry is now

 $AdS_2 \times S^2 \times T^2 \times M$ with fluxes

 $ds^{2} = R^{2}(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \sin^{2}\theta d\phi^{2}) + 2dzd\bar{z} + 2rg_{a\bar{b}}dz^{a}d\bar{z}^{\bar{b}}$

$$F^{(4)} = \frac{p^1}{4\pi} \sin\theta d\theta \wedge d\phi \wedge \omega_1; \qquad F^{(2)} = \frac{R}{g_s} dr \wedge dt$$

 $(g_{a\bar{b}}: \text{ metric on } M; \omega_1: \text{ vol. form on } T^2; R = \frac{g_s}{2\pi} \sqrt{\frac{p^1}{|q_0|}})$

Small BH quantum mechanics

As in GSY, we consider D2-branes with N units of D0-flux and wrapped on S². Terms contributing to the action:

$$S = T_2 \int d^3 \sigma e^{-\phi} \sqrt{-\det(G+F)} + T_2 \int_{D2} C^{(3)} + T_2 \int_{D2} F \wedge C^{(1)}$$

This leads to the bosonic Hamiltonian ($\xi = 1/\sqrt{r}$):

$$H = \frac{1}{8RT} P_{\xi}^{2} + \frac{R}{T\xi^{2}} (P_{z} - A_{z})(P_{\bar{z}} - A_{\bar{z}}) + \frac{32\pi^{4}R^{5}}{g_{s}^{2}N\xi^{2}} + \frac{Q}{T} P_{a}g^{a\bar{b}}P_{\bar{b}}; \qquad dA \equiv 2\pi p^{1}\omega_{1}$$

Small BH quantum mechanics

As in GSY, we consider D2-branes with N units of D0-flux and wrapped on S². Terms contributing to the action:

$$S = T_2 \int d^3 \sigma e^{-\phi} \sqrt{-\det(G+F)} + T_2 \int_{D2} C^{(3)} + T_2 \int_{D2} F \wedge C^{(1)}$$

This leads to the bosonic Hamiltonian ($\xi = 1/\sqrt{r}$):

$$H = \frac{1}{8RT} P_{\xi}^{2} + \frac{R}{T\xi^{2}} (P_{z} - A_{z}) (P_{\bar{z}} - A_{\bar{z}}) + \frac{32\pi^{4}R^{5}}{g_{s}^{2}N\xi^{2}} + \frac{Q}{T} P_{a} g^{a\bar{b}} P_{\bar{b}}; \qquad dA \equiv 2\pi p^{1} \omega_{1}$$

• Note: the $AdS_2 \times S^2 \times T^2$ part and the M part decouple!

Symmetry algebra

- The full worldvolume theory includes 16 fermions. Including fermions, the symmetry group splits into a product of
 - N=4 $SU(1, 1|2)_Z$ superconformal quantum mechanics (SCQM) involving the $AdS_2 \times S^2 \times T^2$ coordinates
 - N=4 supersymmetric quantum mechanics (SQM) involving the M coordinates.

Symmetry algebra

- The full worldvolume theory includes 16 fermions. Including fermions, the symmetry group splits into a product of
 - N=4 $SU(1, 1|2)_Z$ superconformal quantum mechanics (SCQM) involving the $AdS_2 \times S^2 \times T^2$ coordinates
 - N=4 supersymmetric quantum mechanics (SQM) involving the M coordinates.
- The ground states are tensor products of chiral primaries of N=4 SCQM and susy ground states of N=4 SQM.

Counting ground states

■ N=4 SCQM chiral primaries are in 1-to-1 correspondence with lowest Landau levels on T^2 . ⇒ there are $\int_{T^2} dA = p^1$ (bosonic) chiral primaries.

Microstates and near-horizon D-brane probes - p. 11/

Counting ground states

- N=4 SCQM chiral primaries are in 1-to-1 correspondence with lowest Landau levels on T^2 . ⇒ there are $\int_{T^2} dA = p^1$ (bosonic) chiral primaries.
- N=4 SQM ground states are in 1-to-1 correspondence with Dolbeault cohomology classes.

 \implies on $M = K_3$: 24 bosonic susy ground states

 \implies on $M = T^4$: 8 bosonic + 8 fermionic ground states.

Counting ground states

- Solution N=4 SCQM chiral primaries are in 1-to-1 correspondence with lowest Landau levels on T^2 . ⇒ there are $\int_{T^2} dA = p^1$ (bosonic) chiral primaries.
- N=4 SQM ground states are in 1-to-1 correspondence with Dolbeault cohomology classes.

 \implies on $M = K_3$: 24 bosonic susy ground states

 \implies on $M = T^4$: 8 bosonic + 8 fermionic ground states.

Since the number of ground states doesn't depend on the background D0-charge q_0 , one can take $q_0 \rightarrow 0$ so that all of the D0 charge comes from the probes and is equal to N.

Counting multi-particle ground states

• on
$$M=K_3$$
 : $Z=\sum d_N q^N=\prod_n \left(1-q^n
ight)^{-24p^1}$

 $\log d_N \simeq 4\pi \sqrt{Np^1} + \dots$

Counting multi-particle ground states

• on
$$M = K_3$$
: $Z = \sum d_N q^N = \prod_n (1 - q^n)^{-24p^1}$
 $\log d_N \simeq 4\pi \sqrt{Np^1} + \dots$

• on
$$M = T^4$$
: $Z = \sum d_N q^N = \prod_n \left(\frac{1+q^n}{1-q^n}\right)^{8p^1}$
 $\log d_N \simeq 2\sqrt{2\pi}\sqrt{Np^1} + \dots$

Counting multi-particle ground states

• on
$$M = K_3$$
: $Z = \sum d_N q^N = \prod_n (1 - q^n)^{-24p^1}$
 $\log d_N \simeq 4\pi \sqrt{Np^1} + \dots$

• on
$$M = T^4$$
: $Z = \sum d_N q^N = \prod_n \left(\frac{1+q^n}{1-q^n}\right)^{8p^1}$
 $\log d_N \simeq 2\sqrt{2}\pi \sqrt{Np^1} + \dots$

Leading term agrees with black hole entropy in both cases

The D1-D5 system

• Consider Q_1 D1-branes and Q_5 D5-branes wrapped on $M = K_3$ or $T^4 \Rightarrow$ related to the D0-D4 black hole by T-duality + lift to 6 dimensions. We would like to follow a GSY-inspired approach and identify near-horizon supersymmetric probe branes.

The D1-D5 system

- Consider Q_1 D1-branes and Q_5 D5-branes wrapped on $M = K_3$ or $T^4 \Rightarrow$ related to the D0-D4 black hole by T-duality + lift to 6 dimensions. We would like to follow a GSY-inspired approach and identify near-horizon supersymmetric probe branes.
- Near horizon geometry is now $AdS_3 \times S^3 \times M$. In Poincaré coordinates:

$$ds^{2} = r_{1}r_{5}[u^{2}(-dt^{2}+dx^{2})+\frac{du^{2}}{u^{2}}$$
$$+d\psi^{2}+\sin^{2}\psi(d\theta^{2}+\sin^{2}\theta d\phi^{2})]+\frac{r_{1}}{r_{5}}ds^{2}_{M}$$
$$F^{(3)} = \frac{2r_{5}^{2}}{g}[udt\wedge dx\wedge du+\sin^{2}\psi\sin\theta d\psi\wedge d\theta\wedge d\phi]$$

Supersymmetric AdS_2 branes

We considered brane configurations that preserve near-horizon supersymmetries and span an AdS₂ subspace within AdS₃:

Such configurations are static w.r.t. global time.

Supersymmetric AdS_2 **branes**

- The near-horizon geometry preserves 16 supersymmetries. Killing spinors e come in two kinds:
 - 8 Poincaré susies: $\epsilon = \sqrt{u}R(\psi, \theta, \phi)\epsilon_+$
 - 8 enhanced susies:

 $\epsilon = \left(\frac{1}{\sqrt{u}} + \sqrt{u}(t\Gamma^{02} - x\Gamma^{12})\right) R(\psi, \theta, \phi)\epsilon_{-}$

Supersymmetric AdS₂ branes

- The near-horizon geometry preserves 16 supersymmetries. Killing spinors
 e come in two kinds:
 - 8 Poincaré susies: $\epsilon = \sqrt{u}R(\psi, \theta, \phi)\epsilon_+$
 - 8 enhanced susies:

 $\epsilon = \left(\frac{1}{\sqrt{u}} + \sqrt{u}(t\Gamma^{02} - x\Gamma^{12})\right) R(\psi, \theta, \phi)\epsilon_{-}$

Condition for brane probe to preserve some supersymmetry:

 $(1-\Gamma)\epsilon = 0$

where

- Γ (tr $\Gamma = 0$, $\Gamma^2 = 1$) is the operator entering in the κ -symmetry transformation rule on the Dp-brane
- e are the Killing spinors of the background pulled back to the world-volume.

We allow branes to carry worldvolume flux F. Electric part induces F1 charge while magnetic part induces lower D-brane charges.

- We allow branes to carry worldvolume flux F. Electric part induces F1 charge while magnetic part induces lower D-brane charges.
- Results of the analysis:

brane	AdS_3	S^3	M	restrictions
D1	AdS_2	•	•	
D3	AdS_2	•	2-cycle Σ	Σ holomorphic
D5	AdS_2	•	M	
D3	AdS_2	S^2	•	
D7	AdS_2	S^2	M	$F_{ M}$ antiselfdual

- We allow branes to carry worldvolume flux F. Electric part induces F1 charge while magnetic part induces lower D-brane charges.
- Results of the analysis:

brane	AdS_3	S^3	M	restrictions
D1	AdS_2	•	•	
D3	AdS_2	•	2-cycle Σ	Σ holomorphic
D5	AdS_2	•	M	
D3	AdS_2	S^2	•	
D7	AdS_2	S^2	M	$F_{ M}$ antiselfdual

All solutions preserve half of the near horizon susies and half of the Poincaré susies

• Let's focus on the $AdS_2 \times S^2$ brane in the classification above. The S^2 is contractible, hence it carries no net D3-charge. The S^2 is stabilized by turning on worldvolume electric flux due to the coupling $\int F \wedge C^2$.

- Let's focus on the $AdS_2 \times S^2$ brane in the classification above. The S^2 is contractible, hence it carries no net D3-charge. The S^2 is stabilized by turning on worldvolume electric flux due to the coupling $\int F \wedge C^2$.
- Allowing both worldvolume electric field F_{tx} and and magnetic field $F_{\theta\phi}$, this object carries fundamental string charge q and D-string charge p.

- Let's focus on the $AdS_2 \times S^2$ brane in the classification above. The S^2 is contractible, hence it carries no net D3-charge. The S^2 is stabilized by turning on worldvolume electric flux due to the coupling $\int F \wedge C^2$.
- Allowing both worldvolume electric field F_{tx} and and magnetic field $F_{\theta\phi}$, this object carries fundamental string charge q and D-string charge p.
- Blowup can be shown explicitly from the Myers action for multi-D1 branes

- Let's focus on the $AdS_2 \times S^2$ brane in the classification above. The S^2 is contractible, hence it carries no net D3-charge. The S^2 is stabilized by turning on worldvolume electric flux due to the coupling $\int F \wedge C^2$.
- Allowing both worldvolume electric field F_{tx} and and magnetic field $F_{\theta\phi}$, this object carries fundamental string charge q and D-string charge p.
- Blowup can be shown explicitly from the Myers action for multi-D1 branes
- Related branes have been considered
 - p = 0 case: Pawelczyk, Rey: hep-th/0007154
 - S-dual version: Bachas, Petropoulos: hep-th/0012234

• Equation for ψ : $\psi = \pi \frac{q}{Q_5}$ (radius of S^2 is $\sin \psi$). \Rightarrow 'Exclusion bound' on the number of fundamental strings: $q \leq Q_5$

Tension:
$$T = 2\pi \sqrt{(pe^{-\phi})^2 + \left(\frac{Q_5}{\pi}\sin\frac{\pi q}{Q_5}\right)^2}$$

Different values of q preserve the same susies.

• Equation for ψ : $\psi = \pi \frac{q}{Q_5}$ (radius of S^2 is $\sin \psi$). \Rightarrow 'Exclusion bound' on the number of fundamental strings: $q \leq Q_5$

Tension:
$$T = 2\pi \sqrt{(pe^{-\phi})^2 + \left(\frac{Q_5}{\pi}\sin\frac{\pi q}{Q_5}\right)^2}$$

Different values of *q* preserve the same susies.

Compare to D0-D4 black hole:

D0-D4 on $T^2 \times M$ $AdS_2 \times S^2 \times T^2 \times M$ 'puffed' D0 brane \longleftrightarrow '| (D2 on S^2) (D2 on S^2)

D1-D5 on M $AdS_3 \times S^3 \times M$

 $\rightarrow \quad \text{`puffed'} (p,q) \text{ string} \\ \text{(D3 along } AdS_2 \times S^2\text{)}$

 \rightarrow Q_5 values of q? not degenerate

Open questions

Subleading corrections to the black hole entropy

Open questions

- Subleading corrections to the black hole entropy
- Application of GSY proposal to other black holes, such as nonsupersymmetric attractor black holes

Open questions

- Subleading corrections to the black hole entropy
- Application of GSY proposal to other black holes, such as nonsupersymmetric attractor black holes
- Understanding of the AdS_2 branes in D1-D5 system from the dual gauge theory point of view