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4d N=1 SCFT & AdS/CFT
Given a Sasaki–Einstein manifold X5, a stack of N parallel D3–branes at the tip of the (Calabi–Yau) cone
over X5 leads to:

N = 1 superconformal quiver theory is dual to type IIB in AdS5 ×X5 Gubser, 1998

X5 = S5 Maldacena, 1997
Gubser-Klebanov-Polyakov, 1998

Witten, 1998

X5 = T 1,1 Tanno, 1979
Romans, 1984

Candelas-De la Ossa, 1989

Klebanov-Witten, 1998

X5 = Y p,q Gauntlett-Martelli-Sparks-Waldram, 2004
Martelli-Sparks, 2004

Benvenuti-Franco-Hanany-Martelli-Sparks, 2004

X5 = La,b,c

Franco-Hanany-Martelli-Sparks-Vegh-Wecht, 2005
Benvenuti-Kruczenski, 2005

Butti-Forcella-Zaffaroni, 2005

Cvetic-Lu-Pope, 2005
Martelli-Sparks, 2005

SU(2)× SU(2)× U(1)

SU(2)× U(1)× U(1)

U(1)× U(1)× U(1)



Klebanov-Witten model

ds2
5 (T 1,1) =

1
6

2∑

i=1

(dθ2
i + sin2 θidφ2

i ) +
[
1
3

dψ + σ

]2

The conifold: geometry

The conifold is the simplest example of CY, besides C3

and its quotients

Algebraic definition: {uv − zw = 0} ⊂ C4

After some work, one can find a Ricci-flat metric on the
conifold:

ds2 = dr2 + r2ds2(T 1,1)

• T 1,1 is the 5d Sasaki–Einstein base of the conifold

ds2(T 1,1) =
1

6
(dθ2

1 + sin2 θ1dφ2
1 + dθ2

2 + sin2 θ2dφ2
2)

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2

The isometry group of T 1,1 is clearly SU(2)×SU(2)×U(1)

The topology is that of S2 × S3

• The metric also shows that T 1,1 has a fibration structure:

U(1) → T 1,1 → S2 × S2

S2 × S2 is a Kähler–Einstein four-manifold

The volume of T 1,1 is vol(T 1,1) =
∫ √

g(T 1,1) = 27π3

16·4
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When X5 ≡ T 1,1 we have the Klebanov–Witten model dual to 4d N = 1 SU(N) × SU(N) SCFT with a
flavor SU(2)× SU(2) coupled to two chiral superfields in the bifundamental representation

→ Ai, Bi i = 1,2 are promoted to matrix-valued bifunda-
mental chiral fields of the gauge group SU(N)× SU(N):

SU(N) × SU(N) SU(2) × SU(2)

Aα (N, N̄) (2, 1)

Bβ (N̄, N) (1, 2)

The quiver diagram is a simple graphical representation
of this information

!"#$% !"#$%

&'(

) (

To specify completely an N = 1 supersymmetric theory
one needs also the superpotential W . Here this is easily
fixed by the symmetries:

W = εijεklTr AiBkAjBl

7

W = εij εkl Tr Ai Bk Aj Bl

with a superpotential

A

B

Klebanov-Witten, 1998



Quiver theories for Y p,q

W =
q∑

i=1

εαβ(Uα
i V β

i Y2i−1 + V α
i Uβ

i+1Y2i) +
p∑

j=q+1

εαβZjU
α
j+1Y2j−1U

β
j

The quiver theory for Y p,q can be constructed from two basic cells denoted by σ and τ

Y p,q quivers are built with q σ and p− q τ unit cells. The terms in the superpotential come from closed loops

i, j refer to the gauge group where the arrow originates

Gauge group: SU(N)× · · ·× SU(N) (2p times)

Four types of bifundamental chiral fields:
(doublets)
(singlets)

Uα V β

Y Z
(of the global SU(2)){

Benvenuti-Franco-Hanany-Martelli-Sparks, 2004

Y 4,2 ≡ σσ̃τ τ̃
σ̃ and τ̃ are the mirror images
with respect to a horizontal axis

UUUUU

V

Y Y

YY

Y

Y Z

Z

V

U
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Y
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Quantum numbers

Field number R− charge U(1)B U(1)F

Y p + q
−4p2+3q2+2pq+(2p−q)

√
4p2−3q2

3q2 p− q −1

Z p− q
−4p2+3q2−2pq+(2p+q)

√
4p2−3q2

3q2 p + q +1

Uα p
2p(2p−

√
4p2−3q2)

3q2 −p 0

V β q
3q−2p+

√
4p2−3q2

3q q +1

The global U(1) symmetries in the isometry group are identified as U(1)R and a flavor symmetry U(1)F .
There is also a baryonic U(1)B that becomes a gauge symmetry in the gravity dual.

The above assignment satisfies a number of conditions: the linear anomalies vanish TrU(1)B = Tr U(1)F = 0,
as well as the cubic t’ Hooft anomalies TrU(1)3B and TrU(1)3F .



D-branes in the gravity side

D5-brane wrapping the whole five-dimensional compact manifold
– a baryon built out of external quarksThe baryon vertex

D5–branes wrapping 2-cycles of the internal geometry
– fractional branes or defect CFTDomain walls

D3–branes wrapping supersymmetric 3-cycles
– built from chiral fields in quiver theoriesDibaryon operators

The gravity side must contain D–branes Witten, 1998

There are several features of the gauge theory that demand the introduction
of (wrapped) D–branes in the gravity side:

Karch-Katz, 2002Matter hypermultiplets – quarks in the fundamental representation
Spacetime filling wrapped D7–brane

Witten, 1998

Many of these aspects can be studied at the probe approximation level

For example, the introduction of matter in the quenched approximation Nf ! Nc



D-brane probes
The supersymmetric embeddings of the brane probes are obtained by imposing the kappa-symmetry condition:

Γκ ε = ε

where ε is a Killing spinor of the background and Γκ is a matrix that depends on the embedding.

Γκ =
1

(p + 1)!
√
−g

εµ1···µp+1 (τ3)
p−3
2 iτ2 ⊗ γµ1···µp+1

Γκ ε = ε imposes a new projection to the Killing spinor and give rise to a set of first-order BPS differential
equations. They determine the supersymmetric embeddings of the brane probes.

It is a local condition that must be satisfied at any point of the probe worldvolume.

Consider Dp-brane probes in AdS5 ×X5. The embedding is characterized by the set of functions XM (ξµ).

Γ34 η = iη

Γ12 η = −iη{ε = e−
i
2 ψ̃ r−

Γ∗
2

(
1 +

Γr

2L2
xα Γxα (1 + Γ∗ )

)
η

(in the absence of worldvolume gauge fields). The Killing spinors in Sasaki-Einstein X5 manifolds read (Γ∗ ≡ iΓx0x1x2x3)

Becker-Becker-Strominger, 1995
Bergshoeff-Kallosh-Ortín-Papadopoulos, 1997

Bergshoeff-Townsend, 1999

Cederwall-von Gussich-Nilsson-Sundell-Westerberg, 1996
Bergshoeff-Townsend, 1996

Aganagic-Popescu-Schwarz, 1996



Aspects of Y p,q

If c = 0, we recover T 1,1

The metric of the Sasaki-Einstein space Y p,q can be written as

︸ ︷︷ ︸
S2 ≡ SU(2)

U(1)
↑

Isometry group: SU(2)× U(1)× U(1)
H(y) =

√
Q(y)

3(1− cy)
Q(y) = a− 3y2 + 2cy3 = 2c

3∏

i=1

(y − yi)

If c != 0, we can set c = 1 and the metric is regular iff, in terms of two coprime integers p > q, a =
1
2
− p2 − 3q2

4p3

√
4p2 − 3q2

U(1)
↑

ds2
Y p,q =

1− cy

6
(dθ2 + sin2 θ dφ2) +

1
6 H2(y)

dy2 +
Q(y)

9(a− y2)
(dψ + cos θdφ)2 +

2(a− y2)
1− cy

[
dα +

ac− 2y + y2c

6(a− y2)
(dψ + cos θdφ)

]2

y1 ≤ y ≤ y2 0 ≤ θ ≤ π 0 ≤ φ ≤ 2π 0 ≤ α ≤ 2π% 0 ≤ ψ ≤ 2πFor this value of a, the coordinates range results
where y1, y2, ! are specific irrational functions of p and q

Vol(Y p,q) =
q2

3p2

2p +
√

4p2 − 3q2

3q2 − 2p2 + p
√

4p2 − 3q2
π3L4 =

4π4

Vol(Y p,q)
gs N (α′)2The quantization condition of the flux of F (5)

(global symmetry in the field theory side)



Aspects of CY p,q

ds2
Y p,q =

1− cy

6
(dθ2 + sin2 θ dφ2) +

1
6 H2(y)

dy2 +
H2(y)

6
(dβ − c cos θdφ)2 +

1
9

[
dψ + cos θdφ + y(dβ − c cos θdφ)

]2

In order to clarify some aspects of Y p,q, β = −(6α + cψ), and the canonical form

ds2
Y p,q = ds2

4 +
[
1
3
dψ + σ

]2

It neatly displays local features of these spaces:

where ds2
4 is locally a Kähler–Einstein metric with Kähler form J4 = 1

2dσ

It is possible to define a set of local complex coordinates on CY p,q

z1 = tan
θ

2
e−iφ z2 = (sin θ)c exp

(
−

∫
1

H(y)2
dy

)
e−iβ z3 = r3 sin θ exp

(
−

∫
y

H(y)2
dy

)
eiψ

(notice that β is not a periodic coordinate)

The holomorphic three-form of CY p,q simply reads

They are meromorphic functions on CY p,q: z1 (z2) is singular at θ = π (y = y1) and z2 is not globally well-defined

Ω = − 1
18
√

3
dz1 ∧ dz2 ∧ dz3

z1z2



D3-branes on singlet 3-cycles...
A singlet object spans θ and φ coordinates.

Take ξµ = (τ, θ, φ,β) and a generic embedding y(θ, φ, β) and ψ(θ, φ, β). The kappa symmetry matrix:

Γκε =
cosh ρ√
−g

Γτ [ a5 Γ5 + a1Γ1 + a3Γ3 + a135 Γ135 ] ε ≡ ε

where the coefficients on the r.h.s. involve the background, y and ψ, and their first order derivatives. E.g.

a135 =
√

1− cy

18

[
sin θ

H

[
ψθyβ − (y + ψβ) yθ

]
+ H

[
ψφ + (1 + cψβ) cos θ

]
+

i

H

[
(ψφ + (1− cy) cos θ )yβ − (y + ψβ) yφ

]
− iH sin θψθ

]

H(y) = 0 i.e. y = y1 or y = y2

Therefore, if we place the D3-brane at the center of the AdS5 space and wrap it on the three-cycles at y = y1

or y = y2, we obtain a 1
8 supersymmetric configuration.

The matrices Γ1, Γ3 and Γ135 do not commute with SUSY projections. Thus, we must impose a1 = a3 = a135 = 0:

Compatibility with the AdS5 structure of the spinor implies that the D3-brane must be placed at the center of AdS5, ρ = 0.

These configurations should correspond to (di)baryons in the gauge theory side.

Witten, 1998
Gubser-Klebanov, 1998

Berenstein-Herzog-Klebanov, 2002
Gukov-Rangamani-Witten, 1998

Beasley, 2002



...and their field theory duals
The dictionary of AdS/CFT tells us that ∆ = LM , M is the mass of the wrapped D3-brane, M = T3 V3,

gC is the determinant of the spatial part of the induced metric on the 3-cycle C

1
T3

= 8π3(α′)2gs V3 =
∫

C

√
gC d3ξ

For the singlet cycles Si at y = yi (i = 1, 2)

∆S
i =

N

2q2

[
− 4p2 + 3q2 + 2λi pq + (2p− λi q)

√
4p2 − 3q2

]

Being BPS saturated objects, R-charges are just Ri = 2
3 ∆S

i , precisely as the operators det(Y ) and det(Z)

(λ1 = +1, λ2 = −1):

The baryon number is identified with the third homology class of C which, in units of N , is given by

ω is the self-dual 2-form and K is a constant. Then:

B(C) = ±i

∫

C
P

[
K

( dr

r
+

i

L
e5

)
∧ ω

]

C

B(S1) = −i

∫

S1

P
[
Ω2,1

]
S1

= p− q B(S2) = i

∫

S2

P
[
Ω2,1

]
S2

= p + q

in perfect agreement with the baryon numbers of Y and Z!



D3-branes on doublet 3-cycles
We explore supersymmetric embeddings of the form ξµ = (τ, y, β, ψ) with θ(y, β,ψ) and φ(y, β,ψ).

The simplest solution to kappa symmetric constraint is θ = constant and φ = constant

We can compute the conformal dimension: and the baryon number,

∆D = N
p

q2

(
2p −

√
4p2 − 3q2

)
B(D) = −i

∫

D
P

[
K

( dr

r
+

i

L
e5

)
∧ ω

]

D
= −p

which lead to the identification of a dibaryon constructed with Uα Herzog-Ejaz-Klebanov, 2004

It is possible to show that the BPS system can be written as Cauchy–Riemann equations for the above defined z1 and z2

Thus, they can be integrated in general with the result z2 = g(z1)

These are nontrivial kappa symmetric embeddings of a probe D3-brane on AdS5 × Y p,q but, for c "= 0, theydo not correspond
to a wrapped D3-brane!

For T 1,1, instead, some of these embeddings correspond to interesting operators in the gauge theory Areán-Crooks-Ramallo, 2004

Unfortunately, the relation between homogeneous coordinates and the chiral fields of the quiver theory is not as clear for CY p,q

in agreement with the naive expectation that –locally!– they should determine a holomorphic embedding.



BPS fluctuations of dibaryons

Excitations of a singlet dibaryon can be represented as graviton fluctuations in the presence of the dibaryon.

Consider a dibaryon which is a singlet under SU(2), say, det Y . To construct excited dibaryons we should
replace one of the Y factors, for example, by Y UαV βY . We get a new operator of the form

ε1ε
2(Y UαV βY )Y · · · Y

εa1···aN εb1···bN =
∑

σ

(−1)σδa1
σ(b1)

· · · δaN

σ(bN )

Tr(UαV βY ) det Y

where ε1 and ε2 are completely anti-symmetric tensors for the SU(N) factors. Using the identity

the new operator factorize into the original dibaryon and a single-trace operator

ε1ε
2(U1 · · · U1) = det U1

Instead, for the case of dibaryon with SU(2) quantum number the situation is different. Consider, for simplicity, the state with
maximum J3 of the SU(2)

If the SU(2) index of the U field is changed in the excitation, i.e. U1 → U2O, where O is mesonic, the resulting operator cannot
be decomposed as before.

Instead it has to be interpreted as a single particle state in AdS identified with a BPS excitation of the wrapped D3-brane
corresponding to the dibaryon.



Mesonic chiral operators

E.g. Y 4,2

The simplest ones, O1, are operators with R-charge 2, given by short loops of length 3 or 4 in the quiver
(e.g. UV Y , V UY or Y UZU). It is a spin 1 chiral operator with scaling dimension ∆ = 3. Its U(1)F

charge vanishes. There are also two classes of long loops in the quiver: O2 (e.g. V UV UZUZU) and O3 (e.g.
Y UY Y Y U) with spin, respectively, p+q

2 and p−q
2 . They have a nonvanishing value of QF . The baryonic

charge vanishes for any of these loops.

UUUUU

V

Y Y

YY

Y

Y Z

Z

V

UUUUU

V

Y Y

YY

Y

Y Z

Z

V

UUUUU

V

Y Y

YY

Y

Y Z

Z

V

O1

O2

O3

Operator QR QF Spin

O1 2 0 1

O2 p + q − 1
3! p p+q

2

O3 p− q + 1
3! −p p−q

2

These are building blocks of all other scalar BPS operators, O =
∏3

i=1O
ni

i .

The spectrum of fluctuations of a dibaryon –that we obtain via an analysis of open string fluctuations on
wrapped D3-branes– coincides with the mesonic chiral operators!



Further results with D3-branes

Another case of interest that we have considered is a probe D3-brane extended along one spatial direction
of the gauge theory and wrapping a 2-cycle. By means of kappa symmetry we found that this embedding is
not supersymmetric.

Nevertheless, the Euler-Lagrange equations can be solved and the solutions is stable and represents a “fat
string” from the gauge theory point of view.

We fully extended the present analysis to comprise the case of X5 = La,b,c.

P
[ 1

2
J ∧ J

]

D
= Vol(D)

We have showed that the cone on the 3-cycles wrapped by the D3–branes are calibrated submanifolds, i.e.
divisors of CY p,q and CLa,b,c.

It would be interesting to understand the new family of supersymmetric embeddings of D3-branes in terms
of operators in the field theory. It is worth stressing that global homogeneous coordinates exist in any toric
variety but the relation to the field theory operators is much harder in CY p,q or CLa,b,c.



D5-brane probes
The embedding that we paid the most attention to is a D5-brane wrapping a two-dimensional submanifold
in Y p,q and having codimension one in AdS5. In the field theory this is the kind of brane that represents a
domain wall across which the rank of the gauge groups jumps.

Alternatively, if we allow the D5-brane to extend infinitely in the holographic direction, we would get a
configuration dual to a defect CFT that preserves four supersymmetries.

For this configuration we also considered turning on a worldvolume flux and found that it can be done in a
supersymmetric way. The flux in the worldvolume of the brane provides a bending of the profile of the wall.

We also considered D5-branes wrapping the whole Y p,q, which corresponds to the baryon vertex. We
verified that, as in the case of T 1,1, it is not a supersymmetric configuration.

If a D5–brane wraps the whole Y p,q space, the flux of the RR F (5) acts as a source for the electric worldvolume
gauge field which, in turn, gives rise to a bundle of F1s emanating from the D5-brane

P [Ω ]L = eiλ Vol(L)

We fully extended the present analysis to comprise the case of X5 = La,b,c.

We have also showed that the cone on the 2-cycles wrapped by the D5–branes are calibrated (i.e. special
Lagrangian) submanifolds of CY p,q and CLa,b,c.



D7-brane probes

ry =
r

3H2

(
y + ψβ

)
rθ = − r

3 sin θ

[
(1 + cψβ) cos θ + ψφ

]

These configurations preserve the four ordinary supersymmetries of the background

ψ = ψ(β, φ) r = r(y, θ)

In order to implement Γκ ε = ε, we must require Γ∗ ε = −ε and

and considered an embedding of the form

ξ = (t, x1, x2, x3, y,β, θ,φ)With the aim of introducing mesons, we considered spacetime filling D7-branes:

For consistency with the assumed dependence of the functions of the ansatz, ψφ and ψβ must be constants

ψ = n1 φ + n2 β + constantψφ = n1 ψβ = n2

It is now possible to obtain the function r(θ, y) r3(y, θ) = C

[
f1(y)

]n2

f2(y)
[
sin θ

2

]1+n1+cn2 [
cos θ

2

]1−n1+cn2

zm1
1 zm2

2 zm3
3 = kThis can be written as a holomorphic embedding

(
n1 =

m1

m3
n2 =

m2

m3
m3 != 0

)

We also analyzed a D7-brane that wraps Y p,q and is codimension two in AdS5, a configuration that looks,
from the field theory point of view, as a string that preserves two supercharges.

We fully extended the present analysis to comprise the case of X5 = La,b,c.



Conclusions and Final Comments
✶

✶

✶ The identification of supersymmetric four-cycles that a D7-brane can wrap in terms of local complex coor-
dinates of the Calabi-Yau is relevant in cosmological models where inflation is produced by the motion of
a D3-brane in a warped throat. The potential ruling this motion, in presence of a wrapped D7-brane, has
being recently worked out. Baumann-Dymarsky-Klebanov-Maldacena-McAllister-Murugan, 2006

Ganor, 1996
The superpotential correction is actually given by the embedding equation that specifies the four-cycle, in
agreement with a proposal made a decade ago.

Casero-Paredes-Núñez, 2006

✶ It has been recently shown that the probe brane analysis can be smartly used as a key starting point to
introduce flavor in the supergravity dual of N = 1 supersymmetric Yang-Mills theory (Maldacena-Núñez
solution) beyond the probe approximation, i.e. for Nf ∼ Nc.

It would be interesting to work out the meson spectrum of these theories from the excitations of the spacetime
filling D7-branes. We hope that understanding the conformal case might shed some light towards a better
understanding of these issues in the context of AdS/CFT.

We have found a large spectrum of supersymmetric wrapped D-branes (and also non-supersymmetric but
stable branes) in AdS5 × Y p,q and AdS5 × La,b,c.
These families exhaust all possible toric Calabi-Yau cones on a base with topology S2 × S3.


