Probe D-branes in Superconformal Fied Theories

José D. Edelstein
Universidade de Santiago de Compostela
"Constituents, Fundamental Forces and Symmetries of the Universe"
2nd Workshop and Midterm Meeting, Napoli, october 9-13, 2006

Based on joint work with
Felipe Canoura, Alfonso V. Ramallo (USC), Leopoldo A. Pando Zayas, Diana Vaman (UMich) Felipe Canoura, Alfonso V. Ramallo (USC)

JHEP 03 (2006) 101; hep-th/0512087 JHEP 09 (2006) 038; hep-th/0605260

$4 \mathrm{~d} \mathrm{~N}=1 \mathrm{SCFT}$ \& AdS/CFT

Given a Sasaki-Einstein manifold X^{5}, a stack of N parallel D3-branes at the tip of the (Calabi-Yau) cone over X^{5} leads to:

$$
\mathcal{N}=1 \text { superconformal quiver theory is dual to type IIB in } A d S_{5} \times X^{5}
$$

Maldacena, 1997
Gubser-Klebanov-Polyakov, 1998 Witten, 1998

$$
\Rightarrow \quad \begin{aligned}
& X^{5}=T^{1,1} \\
& \\
& S U(2) \times S U(2) \times U(1)
\end{aligned}
$$

Tanno, 1979
Romans, 1984 Candelas-De la Ossa, 1989

Klebanov-Witten, 1998

Gauntlett-Martelli-Sparks-Waldram, 2004
Martelli-Sparks, 2004
Benvenuti-Franco-Hanany-Martelli-Sparks, 2004

Cvetic-Lu-Pope, 2005 Martelli-Sparks, 2005
Benvenuti-Kruczenski, 2005 Franco-Hanany-Martelli-Sparks-Vegh-Wecht, 2005 Butti-Forcella-Zaffaroni, 2005

Klebanov-Witen model

When $X^{5} \equiv T^{1,1}$ we have the Klebanov-Witten model dual to $4 \mathrm{~d} \mathcal{N}=1 S U(N) \times S U(N)$ SCFT with a flavor $S U(2) \times S U(2)$ coupled to two chiral superfields in the bifundamental representation

$$
\begin{array}{cccc}
& S U(N) \times S U(N) & S U(2) \times S U(2) & \text { with a superpotential } \\
A_{\alpha} & (\mathbf{N}, \overline{\mathbf{N}}) & (\mathbf{2}, \mathbf{1}) & W=\epsilon^{i j} \epsilon^{k l} \operatorname{Tr} A_{i} B_{k} A_{j} B_{l} \\
B_{\beta} & (\overline{\mathbf{N}, \mathbf{N})} & (\mathbf{1 , 2)} & \\
& d s_{5}^{2}\left(T^{1,1}\right)=\frac{1}{6} \sum_{i=1}^{2}\left(d \theta_{i}^{2}+\sin ^{2} \theta_{i} d \phi_{i}^{2}\right)+\left[\frac{1}{3} d \psi+\sigma\right]^{2}
\end{array}
$$

The isometry group of $T^{1,1}$ is clearly $S U(2) \times S U(2) \times U(1)$

$$
U(1) \rightarrow T^{1,1} \rightarrow S^{2} \times S^{2}
$$

The topology is that of $S^{2} \times S^{3}$
$S^{2} \times S^{2}$ is a Kähler-Einstein four-manifold

Quiver theories for $Y^{\prime \prime}$

Gauge group: $\quad S U(N) \times \cdots \times S U(N) \quad(2 p$ times $)$

Four types of bifundamental chiral fields:

The quiver theory for $Y^{p, q}$ can be constructed from two basic cells denoted by σ and τ

$$
Y^{4,2} \equiv \sigma \tilde{\sigma} \tau \tilde{\tau}
$$

$\tilde{\sigma}$ and $\tilde{\tau}$ are the mirror images with respect to a horizontal axis
$Y^{p, q}$ quivers are built with $q \sigma$ and $p-q \tau$ unit cells. The terms in the superpotential come from closed loops

$$
W=\sum_{i=1}^{q} \epsilon_{\alpha \beta}\left(U_{i}^{\alpha} V_{i}^{\beta} Y_{2 i-1}+V_{i}^{\alpha} U_{i+1}^{\beta} Y_{2 i}\right)+\sum_{j=q+1}^{p} \epsilon_{\alpha \beta} Z_{j} U_{j+1}^{\alpha} Y_{2 j-1} U_{j}^{\beta}
$$

i, j refer to the gauge group where the arrow originates

Quantum numbers

The global $U(1)$ symmetries in the isometry group are identified as $U(1)_{R}$ and a flavor symmetry $U(1)_{F}$. There is also a baryonic $U(1)_{B}$ that becomes a gauge symmetry in the gravity dual.

Field	number	$R-$ charge	$U(1)_{B}$	$U(1)_{F}$
Y	$p+q$	$\frac{-4 p^{2}+3 q^{2}+2 p q+(2 p-q) \sqrt{4 p^{2}-3 q^{2}}}{3 q^{2}}$	$p-q$	-1
Z	$p-q$	$\frac{-4 p^{2}+3 q^{2}-2 p q+(2 p+q) \sqrt{4 p^{2}-3 q^{2}}}{3 q^{2}}$	$p+q$	+1
U^{α}	p	$\frac{2 p\left(2 p-\sqrt{4 p^{2}-3 q^{2}}\right)}{3 q^{2}}$	$-p$	0
V^{β}	q	$\frac{3 q-2 p+\sqrt{4 p^{2}-3 q^{2}}}{3 q}$	q	+1

The above assignment satisfies a number of conditions: the linear anomalies vanish $\operatorname{Tr} U(1)_{B}=\operatorname{Tr} U(1)_{F}=0$, as well as the cubic t' Hooft anomalies $\operatorname{Tr} U(1)_{B}^{3}$ and $\operatorname{Tr} U(1)_{F}^{3}$.

D-branes in the gravity side

The gravity side must contain D -branes
There are several features of the gauge theory that demand the introduction of (wrapped) D-branes in the gravity side:
\diamond The baryon vertex - a baryon built out of external quarks
D5-brane wrapping the whole five-dimensional compact manifold
\diamond Domain walls - fractional branes or defect CFT
D5-branes wrapping 2-cycles of the internal geometry
\diamond Dibaryon operators - built from chiral fields in quiver theories D3-branes wrapping supersymmetric 3-cycles
\diamond Matter hypermultiplets - quarks in the fundamental representation Spacetime filling wrapped D7-brane

Many of these aspects can be studied at the probe approximation level
For example, the introduction of matter in the quenched approximation $\quad N_{f} \ll N_{c}$

D-brane probes

Consider Dp-brane probes in $A d S_{5} \times X^{5}$. The embedding is characterized by the set of functions $X^{M}\left(\xi^{\mu}\right)$.
The supersymmetric embeddings of the brane probes are obtained by imposing the kappa-symmetry condition:
Becker-Becker-Strominger, 1995
Bergshoeff-Kallosh-Ortín-Papadopoulos, 1997
Bergshoeff-Townsend, 1999
Bergshoeff-Kallosh-Ortín-Papadopoulos, 1997
Bergshoeff-Townsend, 1999

$$
\Gamma_{\kappa} \epsilon=\epsilon
$$

where ϵ is a Killing spinor of the background and Γ_{κ} is a matrix that depends on the embedding.
Cederwall-von Gussich-Nilsson-Sundell-Westerberg, 1996 Bergshoeff-Townsend, 1996

$$
\Gamma_{\kappa}=\frac{1}{(p+1)!\sqrt{-g}} \epsilon^{\mu_{1} \cdots \mu_{p+1}}\left(\tau_{3}\right)^{\frac{p-3}{2}} i \tau_{2} \otimes \gamma_{\mu_{1} \cdots \mu_{p+1}}
$$

$$
\text { Aganagic-Popescu-Schwarz, } 1996
$$

(in the absence of worldvolume gauge fields). The Killing spinors in Sasaki-Einstein X^{5} manifolds read $\left(\Gamma_{*} \equiv i \Gamma_{x^{0} x^{1} x^{2} x^{3}}\right)$

$$
\epsilon=e^{-\frac{i}{2} \tilde{\psi}} r^{-\frac{\Gamma_{*}}{2}}\left(1+\frac{\Gamma_{r}}{2 L^{2}} x^{\alpha} \Gamma_{x^{\alpha}}\left(1+\Gamma_{*}\right)\right) \eta
$$

$$
\begin{aligned}
& \Gamma_{12} \eta=-i \eta \\
& \Gamma_{34} \eta=i \eta
\end{aligned}
$$

$\Gamma_{\kappa} \epsilon=\epsilon$ imposes a new projection to the Killing spinor and give rise to a set of first-order BPS differential equations. They determine the supersymmetric embeddings of the brane probes.

It is a local condition that must be satisfied at any point of the probe worldvolume.

Aspects of $Y^{\prime \prime}$

The metric of the Sasaki-Einstein space $Y^{p, q}$ can be written as

$$
d s_{Y^{p, q}}^{2}=\frac{1-c y}{6} \underbrace{\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}_{S^{2} \equiv S U(2)}+\frac{1}{6 H^{2}(y)} d y^{2}+\frac{\mathcal{Q}(y)}{9\left(a-y^{2}\right)}(d \psi+\cos \theta d \phi)^{2}+\frac{2\left(a-y^{2}\right)}{1-c y}\left[d \alpha+\frac{a c-2 y+y^{2} c}{6\left(a-y^{2}\right)}(d \psi+\cos \theta d \phi)\right]^{2}
$$

$$
H(y)=\sqrt{\frac{\mathcal{Q}(y)}{3(1-c y)}} \quad \mathcal{Q}(y)=a-3 y^{2}+2 c y^{3}=2 c \prod_{i=1}^{3}\left(y-y_{i}\right)
$$

Isometry group: $\quad S U(2) \times U(1) \times U(1)$
(global symmetry in the field theory side)
$\Rightarrow \quad$ If $c=0$, we recover $T^{1,1}$
\Rightarrow If $c \neq 0$, we can set $c=1$ and the metric is regular iff, in terms of two coprime integers $p>q, \quad a=\frac{1}{2}-\frac{p^{2}-3 q^{2}}{4 p^{3}} \sqrt{4 p^{2}}-3 q^{2}$

For this value of a, the coordinates range results $\quad y_{1} \leq y \leq y_{2} \quad 0 \leq \theta \leq \pi \quad 0 \leq \phi \leq 2 \pi \quad 0 \leq \alpha \leq 2 \pi \ell \quad 0 \leq \psi \leq 2 \pi$ where y_{1}, y_{2}, ℓ are specific irrational functions of p and q

The quantization condition of the flux of $F^{(5)}$

$$
L^{4}=\frac{4 \pi^{4}}{\operatorname{Vol}\left(Y^{p, q}\right)} g_{s} N\left(\alpha^{\prime}\right)^{2}
$$

$$
\operatorname{Vol}\left(Y^{p, q}\right)=\frac{q^{2}}{3 p^{2}} \frac{2 p+\sqrt{4 p^{2}-3 q^{2}}}{3 q^{2}-2 p^{2}+p \sqrt{4 p^{2}-3 q^{2}}} \pi^{3}
$$

Aspects of CY"

In order to clarify some aspects of $Y^{p, q}, \beta=-(6 \alpha+c \psi)$, and the canonical form (notice that β is not a periodic coordinate)

$$
d s_{Y^{p, q}}^{2}=\frac{1-c y}{6}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+\frac{1}{6 H^{2}(y)} d y^{2}+\frac{H^{2}(y)}{6}(d \beta-c \cos \theta d \phi)^{2}+\frac{1}{9}[d \psi+\cos \theta d \phi+y(d \beta-c \cos \theta d \phi)]^{2}
$$

It neatly displays local features of these spaces:

$$
d s_{Y^{p, q}}^{2}=d s_{4}^{2}+\left[\frac{1}{3} d \psi+\sigma\right]^{2}
$$

where $d s_{4}^{2}$ is locally a Kähler-Einstein metric with Kähler form $J_{4}=\frac{1}{2} d \sigma$

It is possible to define a set of local complex coordinates on $C Y^{p, q}$

$$
z_{1}=\tan \frac{\theta}{2} e^{-i \phi} \quad z_{2}=(\sin \theta)^{c} \exp \left(-\int \frac{1}{H(y)^{2}} d y\right) e^{-i \beta} \quad z_{3}=r^{3} \sin \theta \exp \left(-\int \frac{y}{H(y)^{2}} d y\right) e^{i \psi}
$$

They are meromorphic functions on $C Y^{p, q}: z_{1}\left(z_{2}\right)$ is singular at $\theta=\pi\left(y=y_{1}\right)$ and z_{2} is not globally well-defined

The holomorphic three-form of $C Y^{p, q}$ simply reads

$$
\Omega=-\frac{1}{18 \sqrt{3}} \frac{d z_{1} \wedge d z_{2} \wedge d z_{3}}{z_{1} z_{2}}
$$

D3-branes on singlè 3-cycles...

A singlet object spans θ and ϕ coordinates.
Take $\xi^{\mu}=(\tau, \theta, \phi, \beta)$ and a generic embedding $y(\theta, \phi, \beta)$ and $\psi(\theta, \phi, \beta)$. The kappa symmetry matrix:

$$
\Gamma_{\kappa} \epsilon=\frac{\cosh \rho}{\sqrt{-g}} \Gamma_{\tau}\left[a_{5} \Gamma_{5}+a_{1} \Gamma_{1}+a_{3} \Gamma_{3}+a_{135} \Gamma_{135}\right] \epsilon \equiv \epsilon
$$

where the coefficients on the r.h.s. involve the background, y and ψ, and their first order derivatives. E.g.

$$
a_{135}=\frac{\sqrt{1-c y}}{18}\left[\frac{\sin \theta}{H}\left[\psi_{\theta} y_{\beta}-\left(y+\psi_{\beta}\right) y_{\theta}\right]+H\left[\psi_{\phi}+\left(1+c \psi_{\beta}\right) \cos \theta\right]+\frac{i}{H}\left[\left(\psi_{\phi}+(1-c y) \cos \theta\right) y_{\beta}-\left(y+\psi_{\beta}\right) y_{\phi}\right]-i H \sin \theta \psi_{\theta}\right]
$$

The matrices Γ_{1}, Γ_{3} and Γ_{135} do not commute with SUSY projections. Thus, we must impose $a_{1}=a_{3}=a_{135}=0$:

$$
H(y)=0 \quad \text { i.e. } \quad y=y_{1} \quad \text { or } \quad y=y_{2}
$$

Compatibility with the $A d S_{5}$ structure of the spinor implies that the D3-brane must be placed at the center of $A d S_{5}, \rho=0$.
Therefore, if we place the D3-brane at the center of the $A d S_{5}$ space and wrap it on the three-cycles at $y=y_{1}$ or $y=y_{2}$, we obtain a $\frac{1}{8}$ supersymmetric configuration.

These configurations should correspond to (di)baryons in the gauge theory side.

...and their field theory duals

The dictionary of AdS/CFT tells us that $\Delta=L M, M$ is the mass of the wrapped D3-brane, $M=T_{3} V_{3}$,

$$
\frac{1}{T_{3}}=8 \pi^{3}\left(\alpha^{\prime}\right)^{2} g_{s} \quad V_{3}=\int_{\mathcal{C}} \sqrt{g_{\mathcal{C}}} d^{3} \xi
$$

$g_{\mathcal{C}}$ is the determinant of the spatial part of the induced metric on the 3 -cycle \mathcal{C}
For the singlet cycles S_{i} at $y=y_{i}(i=1,2) \quad\left(\lambda_{1}=+1, \lambda_{2}=-1\right)$:

$$
\Delta_{i}^{\mathrm{S}}=\frac{N}{2 q^{2}}\left[-4 p^{2}+3 q^{2}+2 \lambda_{i} p q+\left(2 p-\lambda_{i} q\right) \sqrt{4 p^{2}-3 q^{2}}\right]
$$

Being BPS saturated objects, R-charges are just $R_{i}=\frac{2}{3} \Delta_{i}^{\mathrm{S}}$, precisely as the operators $\operatorname{det}(Y)$ and $\operatorname{det}(Z)$

The baryon number is identified with the third homology class of \mathcal{C} which, in units of N, is given by

$$
\mathcal{B}(\mathcal{C})= \pm i \int_{\mathcal{C}} P\left[K\left(\frac{d r}{r}+\frac{i}{L} e^{5}\right) \wedge \omega\right]_{\mathcal{C}}
$$

ω is the self-dual 2-form and K is a constant. Then:

$$
\mathcal{B}\left(\mathrm{S}_{1}\right)=-i \int_{\mathrm{S}_{1}} P\left[\Omega_{2,1}\right]_{\mathrm{S}_{1}}=p-q \quad \mathcal{B}\left(\mathrm{~S}_{2}\right)=i \int_{\mathrm{S}_{2}} P\left[\Omega_{2,1}\right]_{\mathrm{S}_{2}}=p+q
$$

in perfect agreement with the baryon numbers of Y and Z !

D3-branes on doublè 3-cycles

We explore supersymmetric embeddings of the form $\xi^{\mu}=(\tau, y, \beta, \psi)$ with $\theta(y, \beta, \psi)$ and $\phi(y, \beta, \psi)$.
The simplest solution to kappa symmetric constraint is $\theta=$ constant and $\phi=$ constant

We can compute the conformal dimension:

$$
\Delta^{D}=N \frac{p}{q^{2}}\left(2 p-\sqrt{4 p^{2}-3 q^{2}}\right)
$$

and the baryon number,

$$
\mathcal{B}(\mathrm{D})=-i \int_{\mathrm{D}} P\left[K\left(\frac{d r}{r}+\frac{i}{L} e^{5}\right) \wedge \omega\right]_{\mathrm{D}}=-p
$$

which lead to the identification of a dibaryon constructed with U^{α}

It is possible to show that the BPS system can be written as Cauchy-Riemann equations for the above defined z_{1} and z_{2}
Thus, they can be integrated in general with the result $\quad z_{2}=g\left(z_{1}\right)$
in agreement with the naive expectation that -locally!- they should determine a holomorphic embedding.
These are nontrivial kappa symmetric embeddings of a probe D3-brane on $A d S_{5} \times Y^{p, q}$ but, for $c \neq 0$, they do not correspond to a wrapped D3-brane!

For $T^{1,1}$, instead, some of these embeddings correspond to interesting operators in the gauge theory
Unfortunately, the relation between homogeneous coordinates and the chiral fields of the quiver theory is not as clear for $C Y^{p, q}$

BPS fluctuations of dibaryons

Consider a dibaryon which is a singlet under $S U(2)$, say, $\operatorname{det} Y$. To construct excited dibaryons we should replace one of the Y factors, for example, by $Y U^{\alpha} V^{\beta} Y$. We get a new operator of the form

$$
\epsilon_{1} \epsilon^{2}\left(Y U^{\alpha} V^{\beta} Y\right) Y \cdots Y
$$

where ϵ_{1} and ϵ^{2} are completely anti-symmetric tensors for the $S U(N)$ factors. Using the identity $\epsilon^{a_{1} \cdots a_{N}} \epsilon_{b_{1} \cdots b_{N}}=\sum_{\sigma}(-1)^{\sigma} \delta_{\sigma\left(b_{1}\right)}^{a_{1}} \cdots \delta_{\sigma\left(b_{N}\right)}^{a_{N}}$ the new operator factorize into the original dibaryon and a single-trace operator

$$
\operatorname{Tr}\left(U^{\alpha} V^{\beta} Y\right) \operatorname{det} Y
$$

Excitations of a singlet dibaryon can be represented as graviton fluctuations in the presence of the dibaryon.

Instead, for the case of dibaryon with $S U(2)$ quantum number the situation is different. Consider, for simplicity, the state with maximum J_{3} of the $S U(2)$

$$
\epsilon_{1} \epsilon^{2}\left(U^{1} \cdots U^{1}\right)=\operatorname{det} U^{1}
$$

If the $S U(2)$ index of the U field is changed in the excitation, i.e. $U^{1} \rightarrow U^{2} \mathcal{O}$, where \mathcal{O} is mesonic, the resulting operator cannot be decomposed as before.

Instead it has to be interpreted as a single particle state in $A d S$ identified with a BPS excitation of the wrapped D3-brane corresponding to the dibaryon.

Mesonic chiral operators

The simplest ones, \mathcal{O}_{1}, are operators with R-charge 2, given by short loops of length 3 or 4 in the quiver (e.g. $U V Y, V U Y$ or $Y U Z U$). It is a spin 1 chiral operator with scaling dimension $\Delta=3$. Its $U(1)_{F}$ charge vanishes. There are also two classes of long loops in the quiver: \mathcal{O}_{2} (e.g. $V U V U Z U Z U$) and \mathcal{O}_{3} (e.g. $Y U Y Y Y U)$ with spin, respectively, $\frac{p+q}{2}$ and $\frac{p-q}{2}$. They have a nonvanishing value of Q_{F}. The baryonic charge vanishes for any of these loops. E.g. $Y^{4,2}$

Operator	Q_{R}	Q_{F}	Spin
\mathcal{O}_{1}	2	0	1
\mathcal{O}_{2}	$p+q-\frac{1}{3 \ell}$	p	$\frac{p+q}{2}$
\mathcal{O}_{3}	$p-q+\frac{1}{3 \ell}$	$-p$	$\frac{p-q}{2}$

These are building blocks of all other scalar BPS operators, $\mathcal{O}=\prod_{i=1}^{3} \mathcal{O}_{i}{ }^{{ }^{n_{i}}}$.
The spectrum of fluctuations of a dibaryon -that we obtain via an analysis of open string fluctuations on wrapped D3-branes- coincides with the mesonic chiral operators!

Further resulis with D3-branes

$\diamond \quad$ We fully extended the present analysis to comprise the case of $X^{5}=L^{a, b, c}$.

- We have showed that the cone on the 3-cycles wrapped by the D3-branes are calibrated submanifolds, i.e. divisors of $C Y^{p, q}$ and $C L^{a, b, c}$.

$$
P\left[\frac{1}{2} J \wedge J\right]_{\mathcal{D}}=\operatorname{Vol}(\mathcal{D})
$$

It would be interesting to understand the new family of supersymmetric embeddings of D3-branes in terms of operators in the field theory. It is worth stressing that global homogeneous coordinates exist in any toric variety but the relation to the field theory operators is much harder in $C Y^{p, q}$ or $C L^{a, b, c}$.
\diamond Another case of interest that we have considered is a probe D3-brane extended along one spatial direction of the gauge theory and wrapping a 2-cycle. By means of kappa symmetry we found that this embedding is not supersymmetric.
\diamond Nevertheless, the Euler-Lagrange equations can be solved and the solutions is stable and represents a "fat string" from the gauge theory point of view.

D5-brane probes

\diamond The embedding that we paid the most attention to is a D5-brane wrapping a two-dimensional submanifold in $Y^{p, q}$ and having codimension one in $A d S_{5}$. In the field theory this is the kind of brane that represents a domain wall across which the rank of the gauge groups jumps.
\diamond Alternatively, if we allow the D5-brane to extend infinitely in the holographic direction, we would get a configuration dual to a defect CFT that preserves four supersymmetries.

For this configuration we also considered turning on a worldvolume flux and found that it can be done in a supersymmetric way. The flux in the worldvolume of the brane provides a bending of the profile of the wall.
\diamond We also considered D5-branes wrapping the whole $Y^{p, q}$, which corresponds to the baryon vertex. We verified that, as in the case of $T^{1,1}$, it is not a supersymmetric configuration.
If a D5-brane wraps the whole $Y^{p, q}$ space, the flux of the $R R F^{(5)}$ acts as a source for the electric worldvolume gauge field which, in turn, gives rise to a bundle of F1s emanating from the D5-braneWe fully extended the present analysis to comprise the case of $X^{5}=L^{a, b, c}$.

We have also showed that the cone on the 2 -cycles wrapped by the D 5 -branes are calibrated (i.e. special Lagrangian) submanifolds of $C Y^{p, q}$ and $C L^{a, b, c}$.

$$
P[\Omega]_{\mathcal{L}}=e^{i \lambda} \operatorname{Vol}(\mathcal{L})
$$

D7-brane probes

\diamond With the aim of introducing mesons, we considered spacetime filling D7-branes: $\quad \xi=\left(t, x^{1}, x^{2}, x^{3}, y, \beta, \theta, \phi\right)$ and considered an embedding of the form $\quad \psi=\psi(\beta, \phi) \quad r=r(y, \theta)$

In order to implement $\Gamma_{\kappa} \epsilon=\epsilon$, we must require $\Gamma_{*} \epsilon=-\epsilon$ and

$$
r_{y}=\frac{r}{3 H^{2}}\left(y+\psi_{\beta}\right) \quad r_{\theta}=-\frac{r}{3 \sin \theta}\left[\left(1+c \psi_{\beta}\right) \cos \theta+\psi_{\phi}\right]
$$

These configurations preserve the four ordinary supersymmetries of the background
For consistency with the assumed dependence of the functions of the ansatz, ψ_{ϕ} and ψ_{β} must be constants

$$
\psi_{\phi}=n_{1} \quad \psi_{\beta}=n_{2} \quad \underset{\sim}{ } \quad \psi=n_{1} \phi+n_{2} \beta+\mathrm{constant}
$$

It is now possible to obtain the function $r(\theta, y)$

$$
r^{3}(y, \theta)=C \frac{\left[f_{1}(y)\right]^{n_{2}} f_{2}(y)}{\left[\sin \frac{\theta}{2}\right]^{1+n_{1}+c n_{2}}\left[\cos \frac{\theta}{2}\right]^{1-n_{1}+c n_{2}}}
$$

\diamond This can be written as a holomorphic embedding

$$
z_{1}^{m_{1}} z_{2}^{m_{2}} z_{3}^{m_{3}}=
$$

$$
\left(n_{1}=\frac{m_{1}}{m_{3}} \quad n_{2}=\frac{m_{2}}{m_{3}} \quad m_{3} \neq 0\right)
$$

We also analyzed a D7-brane that wraps $Y^{p, q}$ and is codimension two in $A d S_{5}$, a configuration that looks, from the field theory point of view, as a string that preserves two supercharges.
\diamond We fully extended the present analysis to comprise the case of $X^{5}=L^{a, b, c}$.

Condusions and Final Comments

* We have found a large spectrum of supersymmetric wrapped D-branes (and also non-supersymmetric but stable branes) in $A d S_{5} \times Y^{p, q}$ and $A d S_{5} \times L^{a, b, c}$.
These families exhaust all possible toric Calabi-Yau cones on a base with topology $S^{2} \times S^{3}$.

It would be interesting to work out the meson spectrum of these theories from the excitations of the spacetime filling D7-branes. We hope that understanding the conformal case might shed some light towards a better understanding of these issues in the context of AdS/CFT.

It has been recently shown that the probe brane analysis can be smartly used as a key starting point to introduce flavor in the supergravity dual of $\mathcal{N}=1$ supersymmetric Yang-Mills theory (Maldacena-Núñez solution) beyond the probe approximation, i.e. for $N_{f} \sim N_{c}$.

* The identification of supersymmetric four-cycles that a D7-brane can wrap in terms of local complex coordinates of the Calabi-Yau is relevant in cosmological models where inflation is produced by the motion of a D3-brane in a warped throat. The potential ruling this motion, in presence of a wrapped D7-brane, has being recently worked out.

The superpotential correction is actually given by the embedding equation that specifies the four-cycle, in agreement with a proposal made a decade ago.

