Singleton Strings

Laura Tamassia

Institutionen för Teoretisk Fysik, Uppsala Universitet *moving to* Instituut voor Theoretische Fysica, K. U. Leuven

based on work with

J. Engquist (Utrecht) and **P. Sundell**, (SNS, Pisa), *to appear*, and on their previous paper hep-th/0508124

Napoli, October 13th, 2006

Motivation

- The group theoretical structure of physics in *AdS* backgrounds is intrinsically different with respect to the flat case. Exploit this in the study of string and brane dynamics in *AdS* spacetime.
- To make ends meet between
 - string theory in AdS spacetime (in the tensionless limit)...
 - ...and higher spin gauge theory.

This connection could provide new insight into string quantization in AdS.

• As a byproduct, exploit physical intuition from *AdS* brane dynamics to study a class of *noncompact* **WZW models**, with **negative (fractional) level)**, that are not well understood yet and are interesting in their own right.

Inspiration

• *AdS/CFT correspondence*: On the *CFT* side "*partonic*" description as continuous limit of a discrete **spin chain**. A *singleton* at each site of the spin chain. Anything similar on the string side? Beisert.

Singletons and AdS

- Singleton are "ultra-short" unitary irreps of $\mathfrak{so}(D-1,2)$, forming a single line in weight space with zero-point energy $\epsilon_0 = (D-3)/2$. Dirac.
- Since SO(D 1, 2) can be realized as the group of the **isometries of** AdS_D , singletons play an important role in the study of AdS physics.
- They also play a role in higher spin theories, since higher spin algebras are extensions of so(*D* − 1, 2).
- Singletons **do not admit a flat space limit**. The other irreps can be classified as *massless* or *massive* according to their flat space limit.
- Singletonic particles can be naturally described in the zero radius limit of *AdS* (Dirac's Hypercone).
- Compositeness theorem: singleton ≈ singleton = ⊕ massless irrep.
 Flato,Frønsdal.
- The product of more than two singletons gives massive representations.

AdS symmetries

 $\mathfrak{so}(D-1,2)$ algebra:

 $[M_{AB}, M_{CD}] = i\eta_{BC}M_{AD} + 3$ perm.

$$M_{AB} = -M_{BA} = (M_{AB})^{\dagger}$$

where $A = 0', 0, 1, ..., D - 1$ and $\eta_{AB} = \text{diag}(-, -, +, ..., +)$

Maximal compact subalgebra $\mathfrak{so}(2) \oplus \mathfrak{so}(D-1)$: $\mathfrak{so}(2)$ (spanned by $E = M_{0'0}$) \rightarrow AdS time translations $\mathfrak{so}(D-1)$ (spanned by $J_{rs} = M_{rs}$) \rightarrow AdS rotations The rest: ladder operators $L_r^{\pm} = M_{0r} \mp i M_{0',r} \rightarrow$ AdS spin boosts

$$[E, L_r^{\pm}] = \pm L_r^{\pm} ; [J_{rs}, L_t^{\pm}] = 2i\delta_{t[s}L_{r]}^{\pm}$$
$$[L_r^{-}, L_s^{+}] = 2(iJ_{rs} + \delta_{rs}E)$$
$$[J_{rs}, J_{tu}] = i\delta_{st}J_{ru} + 3 \text{ perm.}$$

The scalar singleton

A unitary irreducible lowest weight representation $\mathcal{D}(E_0, \mathbf{j})$ of $\mathfrak{so}(D-1, 2)$, is characterized by its lowest weight state $|E_0, \mathbf{j}\rangle$, annihilated by L_r^- , with $\mathfrak{so}(2)$ energy eigenvalue E_0 and $\mathfrak{so}(D-1)$ LW label \mathbf{j} . Unitarity imposes a bound between energy and spin. In the case of scalar representations, $E_0 \geq \frac{D-3}{2}$ or $E_0 = 0$.

Consider $|\epsilon_0\rangle$ such that

 $E|\epsilon_0\rangle = \epsilon_0|\epsilon_0\rangle$; $J_{rs}|\epsilon_0\rangle = 0$; $L_r^-|\epsilon_0\rangle = 0$

Build the generalized Verma module

 $\mathcal{V}(\epsilon_0, 0) \equiv \left\{ L_{r_1}^+ \dots L_{r_n}^+ |\epsilon_0\rangle \right\}_{n=0}^{\infty}$

One can prove that, for the special value $\epsilon_0 = \frac{D-3}{2}$ saturating the unitarity bound:

 $L_s^+ L_s^+ |\epsilon_0\rangle$ is itself a LWS (it's a *singular* vector)

 $L_s^+ L_s^+ L_{r_1}^+ \dots L_{r_n}^+ |\epsilon_0\rangle$ is normal to all states (it's a *null* vector)

Singleton constructed by modding out this "trace-part" (*max. ideal*) from $\mathcal{V}(\epsilon_0, 0)$

$$\mathcal{D}(\epsilon_0, 0) \equiv \left\{ L_{\{r_1}^+ \dots L_{r_n\}}^+ |\epsilon_0\rangle \right\}_{n=0}^{\infty} , \quad \epsilon_0 = \frac{D-3}{2}$$

The "partonic" behaviour of some branes...

Semiclassical string solution: *Folded rotating string* with $E \sim S$, (2-cusp string). It can be generalized to N cusps. Gubser, Klebanov, Polyakov; Kruczenski; Frolov, Tseytlin.

* Effective tension vanishes at the cusps

*Bound states at the endpoints

2-cusp string ↔ **bound state of two partons (singletons)**.

Deviation from being free singletons measured by the effective tension.

Arbitrary number of cusps ↔ **singleton gas.**

Generalize to rotating *p*-branes \Rightarrow D-dimensional singletonic degrees of freedom independent of the particular underlying *p*-brane.

Conjecture: The true fundamental degrees of freedom in the tensionless limit are point-like *singletonic* partons.

Tensionless branes in AdS

- Old idea: In the tensionless limit, extended objects fall apart.
- In particular, a *p*-brane in AdS can be described by the discretized (0 + 1)-dimensional Nambu-Goto action with N "pieces", or partons.

To uncover the **singletonic nature of the partons**, the **tensionless** limit must be taken together with a **zero radius** limit in AdS. $\downarrow\downarrow$ The system of *N* partons is described by a **singleton gas**.

The continuum limit: A coset model

Singleton gas of *N* brane partons \rightarrow **worldline gauged sigma model**. **Target space** = *N*-singleton **phase space**.

A heuristic continuum-limit of the phase-space action describing *N* partons, suggests that processes involving an arbitrary number of partons can be described by a **gauged WZW model** on the coset

$$\frac{\widehat{\mathfrak{so}}(D-1,2)_{-\epsilon_0}}{\widehat{\mathfrak{h}}_{-\epsilon_0}}, \quad \text{with } \epsilon_0 = (D-3)/2$$

h such that the gauged model contains **only singletons and their composites**.

In general *D* we propose to gauge the maximal compact subalgebra

$$\widehat{\mathfrak{h}} = \widehat{\mathfrak{so}}(D-1)_{-\epsilon_0} \oplus \widehat{\mathfrak{so}}(2)_{-\epsilon_0}$$

This leads to $c_{\text{coset}} = 0$ and to $h_{\text{singleton}} = 0$ for any D.

Keypoint: the choice of the level $-\epsilon_0$ (negative, and fractional for even *D*!).

The spectrum of the $\widehat{\mathfrak{so}}(D-1,2)_{-\epsilon_0}$ WZW model

Spectrum? Use a **nontrivial vacuum singular vector**! Lesage et al, Gaberdiel For the special value $k = -\epsilon_0$, the symmetric traceless rank 2 tensor

$$V_{AB} = M_A^{\ C} M_{BC} - \text{trace}$$

is a **WZW primary** ⇒ the physical WZW primaries must *decouple*

 $\langle phys LWS' | V_{AB} | phys LWS \rangle = 0$

Solved by the set of scalars (P = 0 vacuum, P = 1: singleton, P = 2: massless, P > 2 massive)

$$|e_0 = P\epsilon_0\rangle, \qquad P = 0, 1, 2, \dots$$

defined by the **P-twisted** conditions

$$\begin{pmatrix} L_r^- \end{pmatrix}_n |e_0\rangle = 0, \quad n \ge -P \quad ; \quad \begin{pmatrix} L_r^+ \end{pmatrix}_n |e_0\rangle = 0, \quad n \ge P \\ (J_{rs})_n |e_0\rangle = 0, \quad E_n |e_0\rangle = \delta_{n,0} \ P\epsilon_0 |e_0\rangle, \quad n \ge 0$$

Note: for P > 1 these are not standard WZW primaries! In D = 4 (and D = 3), a *spinor* singleton and its composites are also present.

Spectral flow

An invariance of the **current algebra**

$$[J_{rs,m}, J_{tu,n}] = i(\delta_{st}J_{ru,m+n} + 3 \text{ perm.}) + 2km\delta_{t[r}\delta_{s]u}\delta_{m+n,0}$$

$$[E_m, E_n] = km\delta_{m+n,0}$$

$$[L_{r,m}^-, L_{s,n}^+] = 2(iJ_{rs,m+n} + \delta_{rs}E_{m+n}) - 2km\delta_{rs}\delta_{m+n,0}$$

$$[L_{r,m}^\pm, L_{s,n}^\pm] = 0$$

$$[E_m, L_{r,n}^\pm] = \pm L_{r,m+n}^\pm ; \quad [J_{rs,m}, L_{t,n}^\pm] = 2i\delta_{t[s}L_{r],m+n}^\pm$$

$$[J_{rs,m}, E_n] = 0$$

under the transformations

$$\tilde{L}_{n}^{\pm} = L_{n \mp w}^{\pm}$$
; $\tilde{E}_{n} = E_{n} + kw\delta_{n,0}$; $\tilde{J}_{rs,n} = J_{rs,n}$

- The P-tupletons are all *connected* by spectral flow.
- The **GKO** conditions for the **maximal compact gauging**

$$E_m |\psi\rangle = 0$$
 , $J_{rs,m} |\psi\rangle = 0$ $(m > 0)$

are *invariant* under spectral flow.

Gauging: the one-singleton sector

 $\frac{\widehat{\mathfrak{so}}(D-1,2)_{-\epsilon_0}}{\widehat{\mathfrak{so}}(D-1)_{-\epsilon_0} \oplus \widehat{\mathfrak{so}}(2)_{-\epsilon_0}}, \quad \text{with } \epsilon_0 = (D-3)/2$

conjectured to contain only singleton and singleton-composite zero modes.

Results from GKO gauging procedure

- Zero modes: choose the sector P = 1 (one singleton).
- Virasoro level 1: the states that survive the gauging are singular and must be modded out. Nothing left.
- Virasoro level 2: focus on the simplest case D = 7. Many states checked. Gauge invariant states are singular.

Open problems:

- different behavior with the dimensionality *D*?
- P > 1 sectors (for example P = 2 level 1?)
- In terms of fields? (in D = 7, a sp(2) doublet Y^{Ai} , singleton sp(2)-inv.).

Conclusions and Outlook

- The maximal compact gauging of $\hat{\mathfrak{so}}(D-1,2)_{-\epsilon_0}$ is a good candidate for describing the singletonic degrees of freedom of tensionless branes in AdS.
- The **"magic" choice of the level** $k = -\epsilon_0$ is the key point!
- The nongauged $\widehat{\mathfrak{so}}(D-1,2)_{-\epsilon_0}$ WZW model displays striking features:
 - generalized definition of primary fields needed...
 - ... supported by the *nontrivial* action of the *spectral flow*.

(similar features in $SU(2)_{-1/2}$ model, see Lesage et al).

- P = 2 (massless) sector of interest for HSGT:
 - All massless primary fields generated by one LWS.
 - Hop from one massless field to another by acting with L_1^{\pm} .

Affine Lie algebraic setting for HSGT?

- Gauging: BRST instead of GKO?
- (D = 4: free fields (symplectic bosons). "Standard" CFT setting.)

Well... a lot of work still needs to be done!