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Motivation

• The group theoretical structure of physics in AdS backgrounds is intrinsically
different with respect to the flat case.
Exploit this in the study of string and brane dynamics in AdS spacetime.

• To make ends meet between

- string theory in AdS spacetime (in the tensionless limit)...

- ...and higher spin gauge theory.

This connection could provide new insight into string quantization in AdS.

• As a byproduct, exploit physical intuition from AdS brane dynamics to study
a class of noncompact WZW models, with negative (fractional) level), that are
not well understood yet and are interesting in their own right.

Inspiration
• AdS/CFT correspondence: On the CFT side “partonic” description as

continuous limit of a discrete spin chain. A singleton at each site of the spin
chain. Anything similar on the string side? Beisert.



Singletons and AdS

• Singleton are “ultra-short” unitary irreps of so(D − 1, 2), forming a single line
in weight space with zero-point energy ε0 = (D − 3)/2. Dirac.

• Since SO(D − 1, 2) can be realized as the group of the isometries of AdSD,
singletons play an important role in the study of AdS physics.

• They also play a role in higher spin theories, since higher spin algebras are
extensions of so(D − 1, 2).

• Singletons do not admit a flat space limit. The other irreps can be classified as
massless or massive according to their flat space limit.

• Singletonic particles can be naturally described in the zero radius limit of AdS
(Dirac’s Hypercone).

• Compositeness theorem: singleton ⊗ singleton =
⊕

massless irrep.
Flato,Frønsdal.

• The product of more than two singletons gives massive representations.



AdS symmetries

so(D − 1, 2) algebra:

[MAB ,MCD] = iηBCMAD + 3 perm.

MAB = −MBA = (MAB)†

where A = 0′, 0, 1, ..., D − 1 and ηAB = diag(−,−, +, ..., +)

Maximal compact subalgebra so(2)⊕ so(D − 1):
so(2) (spanned by E = M0′0)→ AdS time translations
so(D − 1) (spanned by Jrs = Mrs)→ AdS rotations

The rest: ladder operators L±r = M0r ∓ iM0′,r→ AdS spin boosts

[E,L±r ] = ±L±r ;
[
Jrs, L

±
t

]
= 2iδt[sL±r]

[L−r , L
+
s ] = 2(iJrs + δrsE)

[Jrs, Jtu] = iδstJru + 3 perm.



The scalar singleton
A unitary irreducible lowest weight representation D (E0, j) of so(D − 1, 2), is characterized
by its lowest weight state |E0, j〉, annihilated by L−

r , with so(2) energy eigenvalue E0 and
so(D − 1) LW label j. Unitarity imposes a bound between energy and spin. In the case of
scalar representations, E0 ≥ D−3

2
or E0 = 0.

Consider |ε0〉 such that

E|ε0〉 = ε0|ε0〉 ; Jrs|ε0〉 = 0 ; L−r |ε0〉 = 0

Build the generalized Verma module

V (ε0, 0) ≡
{
L+

r1
. . . L+

rn
|ε0〉

}∞
n=0

One can prove that, for the special value ε0 = D−3
2 saturating the unitarity bound:

L+
s L

+
s |ε0〉 is itself a LWS (it’s a singular vector)

L+
s L

+
s L

+
r1
. . . L+

rn
|ε0〉 is normal to all states (it’s a null vector)

Singleton constructed by modding out this ”trace-part” (max. ideal) from V (ε0, 0)

D (ε0, 0) ≡
{
L+
{r1

. . . L+
rn}|ε0〉

}∞
n=0

, ε0 = D−3
2



The “partonic” behaviour of some branes...
Semiclassical string solution: Folded rotating string with E ∼ S, (2-cusp string). It
can be generalized to N cusps. Gubser, Klebanov,Polyakov;Kruczenski;Frolov,Tseytlin.

AdS
AdS

* Effective tension vanishes at the cusps

*Bound states at the endpoints

2-cusp string ↔ bound state of two partons (singletons).
Deviation from being free singletons measured by the effective tension.
Arbitrary number of cusps ↔ singleton gas.
Generalize to rotating p-branes ⇒ D-dimensional singletonic degrees of freedom
independent of the particular underlying p-brane.

Conjecture: The true fundamental degrees of freedom
in the tensionless limit are point-like singletonic partons.



Tensionless branes in AdS
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ξ=3 • Old idea: In the tensionless limit,

extended objects fall apart.

• In particular, a p-brane in AdS

can be described by the discretized
(0 + 1)-dimensional Nambu-Goto
action withN “pieces”, or partons.

To uncover the singletonic nature of the partons,
the tensionless limit must be taken together with a zero radius limit in AdS.

⇓
The system of N partons is described by a singleton gas.



The continuum limit: A coset model

Singleton gas of N brane partons → worldline gauged sigma model.
Target space = N -singleton phase space.

A heuristic continuum-limit of the phase-space action describing N partons,
suggests that processes involving an arbitrary number of partons can be described

by a gauged WZW model on the coset

ŝo(D − 1, 2)−ε0

ĥ−ε0

, with ε0 = (D − 3)/2

h such that the gauged model contains only singletons and their composites.

In general D we propose to gauge the maximal compact subalgebra

ĥ = ŝo(D − 1)−ε0 ⊕ ŝo(2)−ε0

This leads to ccoset = 0 and to hsingleton = 0 for any D.
Keypoint: the choice of the level −ε0 (negative, and fractional for even D!).



The spectrum of the ŝo(D − 1, 2)−ε0 WZW model

Spectrum? Use a nontrivial vacuum singular vector! Lesage et al, Gaberdiel

For the special value k = −ε0, the symmetric traceless rank 2 tensor

VAB = M C
A MBC − trace

is a WZW primary ⇒ the physical WZW primaries must decouple

〈phys LWS′|VAB|phys LWS〉 = 0

Solved by the set of scalars (P = 0 vacuum, P = 1: singleton, P = 2: massless, P > 2 massive)

|e0 = Pε0〉, P = 0, 1, 2, . . .

defined by the P-twisted conditions(
L−r

)
n
|e0〉 = 0, n ≥ −P ;

(
L+

r

)
n
|e0〉 = 0, n ≥ P

(Jrs)n |e0〉 = 0, En|e0〉 = δn,0 Pε0|e0〉, n ≥ 0

Note: for P > 1 these are not standard WZW primaries!
In D = 4 (and D = 3), a spinor singleton and its composites are also present.



Spectral flow
An invariance of the current algebra

[Jrs,m, Jtu,n] = i(δstJru,m+n + 3 perm.) + 2kmδt[rδs]uδm+n,0

[Em, En] = kmδm+n,0

[L−r,m, L
+
s,n] = 2(iJrs,m+n + δrsEm+n)− 2kmδrsδm+n,0

[L±r,m, L
±
s,n] = 0

[Em, L
±
r,n] = ±L±r,m+n ; [Jrs,m, L

±
t,n] = 2iδt[sL±r],m+n

[Jrs,m, En] = 0

under the transformations

L̃±n = L±n∓w ; Ẽn = En + kwδn,0 ; J̃rs,n = Jrs,n

• The P-tupletons are all connected by spectral flow.

• The GKO conditions for the maximal compact gauging

Em|ψ〉 = 0 , Jrs,m|ψ〉 = 0 (m > 0)

are invariant under spectral flow.



Gauging: the one-singleton sector

ŝo(D − 1, 2)−ε0

ŝo(D − 1)−ε0 ⊕ ŝo(2)−ε0

, with ε0 = (D − 3)/2

conjectured to contain only singleton and singleton-composite zero modes.

Results from GKO gauging procedure

- Zero modes: choose the sector P = 1 (one singleton).

- Virasoro level 1: the states that survive the gauging are singular and must be
modded out. Nothing left.

- Virasoro level 2: focus on the simplest case D = 7. Many states checked.
Gauge invariant states are singular.

Open problems:

• different behavior with the dimensionality D?

• P > 1 sectors (for example P = 2 level 1?)

• In terms of fields? (in D = 7, a sp(2) doublet Y Ai, singleton sp(2)-inv.).



Conclusions and Outlook

• The maximal compact gauging of ŝo(D − 1, 2)−ε0 is a good candidate for
describing the singletonic degrees of freedom of tensionless branes in AdS.

• The “magic” choice of the level k = −ε0 is the key point!

• The nongauged ŝo(D − 1, 2)−ε0 WZW model displays striking features:

- generalized definition of primary fields needed...

- ... supported by the nontrivial action of the spectral flow.

(similar features in SU(2)−1/2 model, see Lesage et al).

• P = 2 (massless) sector of interest for HSGT:

- All massless primary fields generated by one LWS.

- Hop from one massless field to another by acting with L±1 .

Affine Lie algebraic setting for HSGT?

• Gauging: BRST instead of GKO?

• (D = 4: free fields (symplectic bosons). “Standard” CFT setting.)

Well... a lot of work still needs to be done!


