Singleton Strings

Laura Tamassia

Institutionen för Teoretisk Fysik, Uppsala Universitet
moving to
Instituut voor Theoretische Fysica, K. U. Leuven
based on work with
J. Engquist (Utrecht) and P. Sundell, (SNS, Pisa), to appear, and on their previous paper hep-th/0508124

Napoli, October 13th, 2006

Motivation

- The group theoretical structure of physics in $A d S$ backgrounds is intrinsically different with respect to the flat case.
Exploit this in the study of string and brane dynamics in $A d S$ spacetime.
- To make ends meet between
- string theory in $A d S$ spacetime (in the tensionless limit)...
- ...and higher spin gauge theory.

This connection could provide new insight into string quantization in $A d S$.

- As a byproduct, exploit physical intuition from $A d S$ brane dynamics to study a class of noncompact WZW models, with negative (fractional) level), that are not well understood yet and are interesting in their own right.

Inspiration

- $A d S / C F T$ correspondence: On the $C F T$ side "partonic" description as continuous limit of a discrete spin chain. A singleton at each site of the spin chain. Anything similar on the string side? Beisert.

Singletons and $A d S$

- Singleton are "ultra-short" unitary irreps of $\mathfrak{s o}(D-1,2)$, forming a single line in weight space with zero-point energy $\epsilon_{0}=(D-3) / 2$. Dirac.
- Since $S O(D-1,2)$ can be realized as the group of the isometries of $A d S_{D}$, singletons play an important role in the study of $A d S$ physics.
- They also play a role in higher spin theories, since higher spin algebras are extensions of $\mathfrak{s o}(D-1,2)$.
- Singletons do not admit a flat space limit. The other irreps can be classified as massless or massive according to their flat space limit.
- Singletonic particles can be naturally described in the zero radius limit of $A d S$ (Dirac's Hypercone).
- Compositeness theorem: singleton \otimes singleton $=\bigoplus$ massless irrep. Flato,Frønsdal.
- The product of more than two singletons gives massive representations.

AdS symmetries

$$
\begin{gathered}
\mathfrak{s o}(D-1,2) \text { algebra: } \\
{\left[M_{A B}, M_{C D}\right]=i \eta_{B C} M_{A D}+3 \text { perm. }} \\
M_{A B}=-M_{B A}=\left(M_{A B}\right)^{\dagger}
\end{gathered}
$$

where $A=0^{\prime}, 0,1, \ldots, D-1$ and $\eta_{A B}=\operatorname{diag}(-,-,+, \ldots,+)$

Maximal compact subalgebra $\mathfrak{s o}(2) \oplus \mathfrak{s o}(D-1)$:
$\mathfrak{s o}(2)$ (spanned by $\left.E=M_{0^{\prime} 0}\right) \rightarrow$ AdS time translations $\mathfrak{s o}(D-1)$ (spanned by $\left.J_{r s}=M_{r s}\right) \rightarrow$ AdS rotations
The rest: ladder operators $L_{r}^{ \pm}=M_{0 r} \mp i M_{0^{\prime}, r} \rightarrow$ AdS spin boosts

$$
\begin{gathered}
{\left[E, L_{r}^{ \pm}\right]= \pm L_{r}^{ \pm} \quad ; \quad\left[J_{r s}, L_{t}^{ \pm}\right]=2 i \delta_{t[s} L_{r]}^{ \pm}} \\
{\left[L_{r}^{-}, L_{s}^{+}\right]=2\left(i J_{r s}+\delta_{r s} E\right)} \\
{\left[J_{r s}, J_{t u}\right]=i \delta_{s t} J_{r u}+3 \text { perm }}
\end{gathered}
$$

The scalar singleton

A unitary irreducible lowest weight representation $\mathcal{D}\left(E_{0}, \mathbf{j}\right)$ of $\mathfrak{s o}(D-1,2)$, is characterized by its lowest weight state $\left|E_{0}, \mathbf{j}\right\rangle$, annihilated by L_{r}^{-}, with $\mathfrak{s o}(2)$ energy eigenvalue E_{0} and $\mathfrak{s o}(D-1)$ LW label \mathbf{j}. Unitarity imposes a bound between energy and spin. In the case of scalar representations, $E_{0} \geq \frac{D-3}{2}$ or $E_{0}=0$.

Consider $\left|\epsilon_{0}\right\rangle$ such that

$$
E\left|\epsilon_{0}\right\rangle=\epsilon_{0}\left|\epsilon_{0}\right\rangle \quad ; \quad J_{r s}\left|\epsilon_{0}\right\rangle=0 \quad ; \quad L_{r}^{-}\left|\epsilon_{0}\right\rangle=0
$$

Build the generalized Verma module

$$
\mathcal{V}\left(\epsilon_{0}, 0\right) \equiv\left\{L_{r_{1}}^{+} \ldots L_{r_{n}}^{+}\left|\epsilon_{0}\right\rangle\right\}_{n=0}^{\infty}
$$

One can prove that, for the special value $\epsilon_{0}=\frac{D-3}{2}$ saturating the unitarity bound:

$$
\begin{gathered}
L_{s}^{+} L_{s}^{+}\left|\epsilon_{0}\right\rangle \text { is itself a LWS (it's a singular vector) } \\
L_{s}^{+} L_{s}^{+} L_{r_{1}}^{+} \ldots L_{r_{n}}^{+}\left|\epsilon_{0}\right\rangle \text { is normal to all states (it's a null vector) }
\end{gathered}
$$

Singleton constructed by modding out this "trace-part" (max. ideal) from $\mathcal{V}\left(\epsilon_{0}, 0\right)$

$$
\mathcal{D}\left(\epsilon_{0}, 0\right) \equiv\left\{L_{\left\{r_{1}\right.}^{+} \ldots L_{\left.r_{n}\right\}}^{+}\left|\epsilon_{0}\right\rangle\right\}_{n=0}^{\infty} \quad, \quad \epsilon_{0}=\frac{D-3}{2}
$$

The "partonic" behaviour of some branes...

Semiclassical string solution: Folded rotating string with $E \sim S$, (2-cusp string). It can be generalized to N cusps. Gubser, Klebanov,Polyakov;Kruczenski;Frolov,Tseytlin.

* Effective tension vanishes at the cusps
*Bound states at the endpoints

2-cusp string \leftrightarrow bound state of two partons (singletons).
Deviation from being free singletons measured by the effective tension.
Arbitrary number of cusps \leftrightarrow singleton gas.
Generalize to rotating p-branes \Rightarrow D-dimensional singletonic degrees of freedom independent of the particular underlying p-brane.

Conjecture: The true fundamental degrees of freedom in the tensionless limit are point-like singletonic partons.

Tensionless branes in $A d S$

- Old idea: In the tensionless limit, extended objects fall apart.
- In particular, a p-brane in $A d S$ can be described by the discretized $(0+1)$-dimensional Nambu-Goto action with N "pieces", or partons.

To uncover the singletonic nature of the partons, the tensionless limit must be taken together with a zero radius limit in $A d S$. \Downarrow
The system of N partons is described by a singleton gas.

The continuum limit: A coset model

Singleton gas of N brane partons \rightarrow worldline gauged sigma model.
Target space $=N$-singleton phase space.

A heuristic continuum-limit of the phase-space action describing N partons, suggests that processes involving an arbitrary number of partons can be described
by a gauged WZW model on the coset

$$
\frac{\widehat{\mathfrak{s o}}(D-1,2)_{-\epsilon_{0}}}{\widehat{\mathfrak{h}}_{-\epsilon_{0}}}, \quad \text { with } \epsilon_{0}=(D-3) / 2
$$

\mathfrak{h} such that the gauged model contains only singletons and their composites.
In general D we propose to gauge the maximal compact subalgebra

$$
\hat{\mathfrak{h}}=\widehat{\mathfrak{s o}}(D-1)_{-\epsilon_{0}} \oplus \widehat{\mathfrak{s o}}(2)_{-\epsilon_{0}}
$$

This leads to $c_{\text {coset }}=0$ and to $h_{\text {singleton }}=0$ for any D.
Keypoint: the choice of the level $-\epsilon_{0}$ (negative, and fractional for even D !).

The spectrum of the $\widehat{\mathfrak{s o}}(D-1,2)_{-\epsilon_{0}}$ WZW model

Spectrum? Use a nontrivial vacuum singular vector! Lesage et al, Gaberdiel
For the special value $k=-\epsilon_{0}$, the symmetric traceless rank 2 tensor

$$
V_{A B}=M_{A}^{C} M_{B C}-\text { trace }
$$

is a WZW primary \Rightarrow the physical WZW primaries must decouple

$$
\left.\left\langle\text { phys } \mathrm{LWS}^{\prime}\right| \mathrm{V}_{\mathrm{AB}} \mid \text { phys } \mathrm{LWS}\right\rangle=0
$$

Solved by the set of scalars ($P=0$ vacuum, $P=1$: singleton, $P=2$: massless, $P>2$ massive)

$$
\left|e_{0}=P \epsilon_{0}\right\rangle, \quad P=0,1,2, \ldots
$$

defined by the P-twisted conditions

$$
\begin{aligned}
& \left(L_{r}^{-}\right)_{n}\left|e_{0}\right\rangle=0, \quad n \geq-P \quad ; \quad\left(L_{r}^{+}\right)_{n}\left|e_{0}\right\rangle=0, \quad n \geq P \\
& \left(J_{r s}\right)_{n}\left|e_{0}\right\rangle=0, \quad E_{n}\left|e_{0}\right\rangle=\delta_{n, 0} P \epsilon_{0}\left|e_{0}\right\rangle, \quad n \geq 0
\end{aligned}
$$

Note: for $P>1$ these are not standard WZW primaries!
In $D=4$ (and $D=3$), a spinor singleton and its composites are also present.

Spectral flow

An invariance of the current algebra

$$
\begin{aligned}
& {\left[J_{r s, m}, J_{t u, n}\right]=i\left(\delta_{s t} J_{r u, m+n}+3 \text { perm. }\right)+2 k m \delta_{t[r} \delta_{s] u} \delta_{m+n, 0}} \\
& {\left[E_{m}, E_{n}\right]=k m \delta_{m+n, 0}} \\
& {\left[L_{r, m}^{-}, L_{s, n}^{+}\right]=2\left(i J_{r s, m+n}+\delta_{r s} E_{m+n}\right)-2 k m \delta_{r s} \delta_{m+n, 0}} \\
& {\left[L_{r, m}^{ \pm}, L_{s, n}^{ \pm}\right]=0} \\
& {\left[E_{m}, L_{r, n}^{ \pm}\right]= \pm L_{r, m+n}^{ \pm} \quad ; \quad\left[J_{r s, m}, L_{t, n}^{ \pm}\right]=2 i \delta_{t[s} L_{r], m+n}^{ \pm}} \\
& {\left[J_{r s, m}, E_{n}\right]=0}
\end{aligned}
$$

under the transformations

$$
\tilde{L}_{n}^{ \pm}=L_{n \mp w}^{ \pm} \quad ; \quad \tilde{E}_{n}=E_{n}+k w \delta_{n, 0} \quad ; \quad \tilde{J}_{r s, n}=J_{r s, n}
$$

- The P-tupletons are all connected by spectral flow.
- The GKO conditions for the maximal compact gauging

$$
E_{m}|\psi\rangle=0 \quad, \quad J_{r s, m}|\psi\rangle=0 \quad(m>0)
$$

are invariant under spectral flow.

Gauging: the one-singleton sector

$$
\frac{\widehat{\mathfrak{s o}}(D-1,2)_{-\epsilon_{0}}}{\widehat{\mathfrak{s o}}(D-1)_{-\epsilon_{0}} \oplus \widehat{\mathfrak{s o}}(2)_{-\epsilon_{0}}}, \quad \text { with } \epsilon_{0}=(D-3) / 2
$$

conjectured to contain only singleton and singleton-composite zero modes.

Results from GKO gauging procedure

- Zero modes: choose the sector $P=1$ (one singleton).
- Virasoro level 1: the states that survive the gauging are singular and must be modded out. Nothing left.
- Virasoro level 2: focus on the simplest case $D=7$. Many states checked. Gauge invariant states are singular.

Open problems:

- different behavior with the dimensionality D ?
- $P>1$ sectors (for example $P=2$ level 1?)
- In terms of fields? (in $D=7$, a $s p(2)$ doublet $Y^{A i}$, singleton $s p(2)$-inv.).

Conclusions and Outlook

- The maximal compact gauging of $\widehat{\mathfrak{s o}}(D-1,2)_{-\epsilon_{0}}$ is a good candidate for describing the singletonic degrees of freedom of tensionless branes in $A d S$.
- The "magic" choice of the level $k=-\epsilon_{0}$ is the key point!
- The nongauged $\widehat{\mathfrak{s o}}(D-1,2)_{-\epsilon_{0}}$ WZW model displays striking features:
- generalized definition of primary fields needed...
- ... supported by the nontrivial action of the spectral flow.
(similar features in $S U(2)_{-1 / 2}$ model, see Lesage et al).
- $P=2$ (massless) sector of interest for HSGT:
- All massless primary fields generated by one LWS.
- Hop from one massless field to another by acting with $L_{1}^{ \pm}$.

Affine Lie algebraic setting for HSGT?

- Gauging: BRST instead of GKO?
- ($D=4$: free fields (symplectic bosons). "Standard" CFT setting.)

Well... a lot of work still needs to be done!

