Supersymmetric D-branes on flux backgrounds

Luca Martucci (ITF, K. U. Leuven)

Based on:

- L. M. \& P. Smyth, hep-th/0507099
- L. M., hep-th/0602129
- P. Koerber \& L. M., hep-th/0610044

Outline

Introduction
$\mathcal{N}=1$ D-calibrated backgrounds and supersymmetric D-branes
$\mathcal{N}=1$ description of space-time filling D-branes

Deformations of calibrated D-branes

Future directions

Introduction

D-branes on backgrounds with reduced supersymmetry play a central role in many string theory models.

In $C Y_{3}$ compactifications to four dimensions $(\mathcal{N}=2)$, D -brane physics is (relatively) well understood \rightarrow key role of the underling integrable complex and Kähler structures.

In $\mathcal{N}=1$ flux compactifications the CY's geometrical properties are generically lost and with them the related D-brane properties.

Question addressed in this talk:
Is it possible to describe (some of) the properties of D-branes on Type II $\mathcal{N}=1$ backgrounds, keeping the analysis on very general grounds?

A brief introduction on calibrations

A calibration in a certain supersymmetric background contains informations about the supersymmetric branes the background admits:

- Supersymmetric branes on purely geometric backgrounds (like CY spaces) are naturally volume minimizing [Becker, Becker \& Strominger, '95] and then calibrated in the standard sense of [Harvey \& Lawson, '82]. A calibration is a p-form $\omega_{(p)}$ such that

$$
d \omega_{(p)}=0 \quad \text { and } \quad P_{\Sigma}\left[\omega_{(p)}\right] \leq \sqrt{P_{\Sigma}[g]} d^{p} \sigma \text { for any } p \text {-submanifold } \Sigma
$$

- For branes with minimal action $\int \sqrt{-g}+\int A$ on backgrounds with nontrivial flux $F=d A$, the background calibration is naturally energy minimizing [Gutowski, Papadopoulos \& Townsend, '99]. This notion has been used and extended e.g. by [Gauntlett, Kim, Martelli, Waldram, Pakis, Sparks, Cascales, Uranga,...]

D-branes contains a world-volume field-strength \mathcal{F} (such that $d \mathcal{F}=P[H]$). The notion of calibration requires a further generalization for more general background and D-brane flux-configurations!

Generalized calibrations for generalized cycles

[See also P. Koerber, hep-th/0506154]

- For a D-brane with energy density \mathcal{E}, we define a generalized calibration on our internal manifold as a polyform $\omega=\sum_{k} \omega_{(k)}$ such that
- Algebraic condition:

$$
\left.P_{\Sigma}[\omega] \wedge e^{\mathcal{F}}\right|_{\text {top }} \leq \mathcal{E}(\Sigma, \mathcal{F}) \quad, \text { for any generalized cycle }(\Sigma, \mathcal{F})
$$

- Differential condition: $\quad d_{H} \omega \equiv(d+H \wedge) \omega=0 \quad$.
- A D-brane wraps a generalized calibrated cycle (Σ, \mathcal{F}) iff

$$
\left.P_{\Sigma}[\omega] \wedge e^{\mathcal{F}}\right|_{\text {top }}=\mathcal{E}(\Sigma, \mathcal{F})
$$

- A D-brane wrapping a generalized calibrated cycle (Σ, \mathcal{F}) is then energy minimizing under continuous deformations, i.e. for any $\left(\Sigma^{\prime}, \mathcal{F}^{\prime}\right)$ continuously connected to (Σ, \mathcal{F})

$$
E(\Sigma, \mathcal{F}) \leq E\left(\Sigma^{\prime}, \mathcal{F}^{\prime}\right)
$$

Background ansatz

General Type II vacua preserving 4 d Poincaré invariance and $4 \mathrm{~d} \mathcal{N}=1$ supersymmetry:

$$
\text { metric: } \quad d s^{2}=e^{2 A(y)} d x^{\mu} d x_{\mu}+\ldots
$$

$$
\begin{array}{ll}
\text { Killing spinors: } & \varepsilon_{1}(y)=\zeta_{+} \otimes \eta_{+}^{(1)}(y)+\text { c. c. } \\
& \varepsilon_{2}(y)=\zeta_{+} \otimes \eta_{\mp}^{(2)}(y)+\text { c. c. } \tag{1}
\end{array}
$$

Introduce the polyforms $\hat{\Psi}_{1}=\hat{\Psi}^{\mp}$ and $\hat{\Psi}_{2}=\hat{\Psi}^{ \pm}$in IIA/IIB defined by Clifford associated bispinors

$$
\eta_{+}^{(1)} \otimes \eta_{ \pm}^{(2) \dagger} \sim \sum_{k=\text { even } / \text { odd }} \frac{1}{k!} \hat{\Psi}_{m_{1} \ldots m_{k}}^{ \pm} \hat{\gamma}^{m_{1} \ldots m_{k}} \leftrightarrow \quad \hat{\Psi}^{ \pm}=\sum_{n=\text { even, odd }} \hat{\Psi}_{(n)}^{ \pm}
$$

The supersymmetry condition can be completely written in terms of equations for $\hat{\Psi}_{1}$ and $\hat{\Psi}_{2}$ [Graña, Minasian, Petrini \& Tomasiello, hep-th/0505212].

$\mathcal{N}=1$ background supersymmetry and calibrations

We restrict to D-calibrated backgrounds, i.e. $\left\|\eta^{(1)}\right\|=\left\|\eta^{(2)}\right\| \rightarrow$ most general $\mathcal{N}=1$ backgrounds admitting static supersymmetric D-branes

Explicit form of the calibrations:

$$
\begin{aligned}
\omega^{(4 \mathrm{~d})} & =e^{4 A}\left(e^{-\Phi} \operatorname{Re} \hat{\Psi}_{1}-\tilde{C}\right) & & \text { space-time filling branes } \\
\omega^{\text {(string })} & =e^{2 A-\Phi} \operatorname{Im} \hat{\Psi}_{1} & & \text { strings } \\
\omega^{(\mathrm{DW})} & =e^{3 A-\Phi} \operatorname{Re}\left(e^{i \theta} \hat{\Psi}_{2}\right) & & \text { domain walls }
\end{aligned}
$$

They satisfy the algebraic condition for generalized calibrations.
Differential condition $d_{H} \omega=0 \Leftrightarrow$ background Killing spinor conditions!
κ-symmetry \Rightarrow Supersymmetric D-branes wrap calibrated generalized cycles
For example, in the Calabi-Yau subcase the generalized calibrations are $\omega^{(\text {even })}=\operatorname{Re}\left(e^{i \theta} e^{-i J}\right), \omega^{\text {(odd })}=\operatorname{Re}\left(e^{i \theta} \Omega\right)$, and the calibration condition reproduces the supersymmetry conditions found by [Mariño, Minasian, Moore \& Strominger, '99]

Relation with Hitchin's and Gualtieri's generalized complex geometry

From domain wall calibrations we learn that

$$
d_{H}\left(e^{3 A-\Phi} \hat{\Psi}_{2}\right)=0
$$

\Downarrow
Since $\hat{\Psi}_{2}$ is a pure spinor, the associated generalized complex structure \mathcal{J}_{2} is integrable \Rightarrow the internal manifold M is a Hitchin's generalized Calabi-Yau
$\hat{\Psi}_{1}$ is also pure but the RR-fields provide an obstruction to the integrability of the associated generalized almost complex structure \mathcal{J}_{1}.

F and D-terms from the effective action

For a space-time filling D-brane wrapping a generalized n-cycle (Σ, \mathcal{F}) define

$$
\begin{aligned}
\mathcal{W}_{m} d \sigma^{1} \wedge \ldots \wedge d \sigma^{n} & =P_{\left.\Sigma\left[e^{3 A-\Phi}\left(\iota_{m}+g_{m k} d y^{k} \wedge\right) \hat{\Psi}_{2}\right] \wedge e^{\mathcal{F}}\right|_{\text {top }}} \\
\mathcal{D} d \sigma^{1} \wedge \ldots \wedge d \sigma^{n} & \left.=P_{\Sigma\left[e^{2 A-\Phi}\right.} \operatorname{Im} \hat{\Psi}_{1}\right]\left.\wedge e^{\mathcal{F}}\right|_{\text {top }}
\end{aligned}
$$

The D-brane (with the appropriate orientation) is supersymmetric (i.e. calibrated) iff

$$
\begin{array}{ll}
\mathcal{W}_{m}=0 & , \quad \mathrm{~F}-\text { flatness } \\
\mathcal{D}=0 & , \quad \mathrm{D}-\text { flatness }
\end{array}
$$

The identification \mathcal{W}_{m} and \mathcal{D} as F and D-terms comes from the expansion of DBI+CS action and susy transformations of the fermions around a susy configuration.

Furthermore, note that

$$
\text { F-flatness } \Leftrightarrow(\Sigma, \mathcal{F}) \text { is a generalized complex submanifold }
$$

Simplest examples: Lagrangian and holomorphic cycles with $\mathcal{F}_{0,2}=0$ are generalized complex submanifolds in symplectic and complex spaces respectively.

The superpotential

The superpotential is given by

$$
\mathcal{W}(\Sigma, \mathcal{F})=\int_{\mathcal{B}} P\left[e^{3 A-\Phi} \hat{\Psi}_{2}\right] \wedge e^{\tilde{\mathcal{F}}}+\text { constant }
$$

where $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolates between a fixed $\left(\Sigma_{0}, \mathcal{F}_{0}\right)$ and (Σ, \mathcal{F}).

For a general deformation of (Σ, \mathcal{F})

$$
\delta \mathcal{W}=0 \quad \Leftrightarrow \quad \text { F-flatness conditions } \mathcal{W}_{m}=0
$$

The same expression from the tension a DW given by a D -brane filling three flat directions and wrapping an internal generalized chain $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolating between $\left(\Sigma_{0}, \mathcal{F}_{0}\right)$ and (Σ, \mathcal{F})

$$
\begin{aligned}
T_{\mathrm{DW}} & =2|\Delta \mathcal{W}|= \\
& =\int_{\mathcal{B}} P\left[\omega^{(D W)}\right] \wedge e^{\tilde{\mathcal{F}}}=\left|\int_{\mathcal{B}} P\left[e^{3 A-\Phi} \hat{\Psi}_{2}\right] \wedge e^{\tilde{\mathcal{F}}}\right|
\end{aligned}
$$

Generalized forms on D-branes

The general infinitesimal deformation of (Σ, \mathcal{F}) is described by a section of the generalized normal bundle:

$$
\left.\mathcal{N}_{(\Sigma, \mathcal{F})} \equiv\left(T_{M} \oplus T_{M}^{\star}\right)\right|_{\Sigma} / T_{(\Sigma, \mathcal{F})}
$$

where $T_{(\Sigma, \mathcal{F})}$ is the generalized tangent bundle.
We can use \mathcal{J}_{2} to split $\mathcal{N}_{(\Sigma, \mathcal{F})} \otimes \mathbb{C}=\mathcal{N}_{(\Sigma, \mathcal{F})}^{1,0} \oplus \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}$ and one can define a differential

$$
d_{(\Sigma, \mathcal{F})}: \Gamma\left(\Lambda^{k} \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}\right) \rightarrow \Gamma\left(\Lambda^{k+1} \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}\right)
$$

and the associated cohomology groups

$$
H^{k}(\Sigma, \mathcal{F}) \equiv \operatorname{ker}\left(\left.d_{(\Sigma, \mathcal{F})}\right|_{k}\right) / \operatorname{im}\left(\left.d_{(\Sigma, \mathcal{F})}\right|_{k-1}\right)
$$

From the DBI-action, it is possible to introduce a metric G depending on $\hat{\Psi}_{1}$ on sections of $\Lambda^{k} \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}$ and thus a codifferential

$$
d_{(\Sigma, \mathcal{F})}^{\dagger}: \Gamma\left(\Lambda^{k} \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}\right) \rightarrow \Gamma\left(\Lambda^{k-1} \mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}\right)
$$

Deformations of calibrated generalized cycles

Consider an infinitesimal deformation given by $\mathbb{X}^{0,1} \in \Gamma\left(\mathcal{N}_{(\Sigma, \mathcal{F})}^{0,1}\right)$. Then

- F-flatness $((\Sigma, \mathcal{F})$ generalized complex):

$$
d_{(\Sigma, \mathcal{F})} \mathbb{X}^{0,1}=0
$$

- Complexified D-flatness (including gauge-fixing):

$$
d_{(\Sigma, \mathcal{F})}^{\dagger} \mathbb{X}^{0,1}=0
$$

Thus

$$
\Delta_{(\Sigma, \mathcal{F})} \mathbb{X}^{0,1}=0 \quad \text { where } \quad \Delta_{(\Sigma, \mathcal{F})} \equiv d_{(\Sigma, \mathcal{F})} d_{(\Sigma, \mathcal{F})}^{\dagger}+d_{(\Sigma, \mathcal{F})}^{\dagger} d_{(\Sigma, \mathcal{F})}
$$

The complexified D -flatness condition provides a gauge-fixing for the \mathcal{J}_{2}-complexified world-volume gauge transformations

$$
\begin{equation*}
\mathbb{X}^{0,1} \rightarrow \mathbb{X}^{0,1}+d_{(\Sigma, \mathcal{F})} \lambda \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\text { massless fluctuations }=H^{1}(\Sigma, \mathcal{F}) \tag{3}
\end{equation*}
$$

Consistent with BRST cohomology of topological branes in GC spaces, which is given by $H^{\bullet}(\Sigma, \mathcal{F})$ [Kapustin \& Li, hep-th/0501071].

A simple example: D3-brane on β-deformed complex manifold

Consider a complex manifold M with holomorphic $(3,0)$ form Ω. A β deformation is given by $\beta \in H^{0}\left(\wedge^{2} T_{M}^{1,0}\right)$, with $[\beta, \beta]=0$ and gives a type 1 pure spinor

$$
e^{3 A-\Phi} \hat{\Psi}_{2}=\iota_{\beta} \Omega+\Omega \quad \Rightarrow \quad d \mathcal{W}_{\mathrm{D} 3}=\iota_{\beta} \Omega
$$

Suppose to have a 0 -cycle (D3-brane) at $z_{0} \in M$. We have that

$$
\text { F-flatness }\left.\quad \Leftrightarrow \quad \iota_{\beta} \Omega\right|_{z_{0}}=\left.0 \quad \Leftrightarrow \quad \beta\right|_{z_{0}}=0 .
$$

Thus, the D3-brane must be located at a point were the type jumps to $3\left(\left.\psi\right|_{z_{0}}=\Omega\right)$. The differential complex is given by $\left.\alpha \in \Lambda^{k} T_{M}^{1,0}\right|_{z_{0}}$, with differential acting as follows

$$
d_{\left\{z_{0}\right\}} \alpha=-\left.\partial \beta\right|_{z_{0}} \circ \alpha \equiv-\left.\frac{1}{2(k-1)!} \partial_{l} \beta^{i_{1} i_{2}} \alpha^{l_{3} \ldots i_{k+1}} \partial_{i_{1}} \wedge \ldots \wedge \partial_{i_{k+1}}\right|_{z_{0}}
$$

One thus obtains

$$
H^{1}\left(\left\{z_{0}\right\}\right)=\left\{\left.X \in T_{M}^{1,0}\right|_{z_{0}}:\left.\partial \beta\right|_{z_{0}} \circ X=0\right\}
$$

More directly, from the D3-brane superpotential,

$$
\left.\partial_{i} \partial_{j} \mathcal{W}_{\mathrm{D} 3}\right|_{z_{0}}=\left.\partial_{i}\left(e^{3 A-\Phi} \hat{\Psi}_{2}\right)_{j}\right|_{z_{0}}=\left.\frac{1}{2}\left(\partial_{i} \beta^{k l}\right) \Omega_{k j}\right|_{z_{0}}
$$

Future directions

- Global properties of the moduli space and higher order obstructions?
- How to extract the effective superpotential $\mathcal{W}_{\text {eff }}(\phi)$ for the massless fluctuations from the geometrical superpotential $\mathcal{W}(\Sigma, \mathcal{F})$?
- Coupling to closed string sector [Grana, Louis \& Waldram '05; Benmachiche \& Grimm '06]?
- Interesting nontrivial explicit realizations?

Superpotentials from domain walls

Consider a BPS DW interpolating between two vacua $\left(\Sigma_{1}, \mathcal{F}_{1}\right)$ and $\left(\Sigma_{2}, \mathcal{F}_{2}\right)$. From field theory arguments [Cvetic et al., '91; Abraham \& Townsend, '91] its tension is given by

$$
T_{\mathrm{DW}}=2|\Delta \mathcal{W}|
$$

In the D-brane realization, this DW is given by a D-brane filling three flat directions and wrapping an internal generalized chain $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolating between $\left(\Sigma_{1}, \mathcal{F}_{1}\right)$ and $\left(\Sigma_{2}, \mathcal{F}_{2}\right)$.

```
\Downarrow
```

The tension is given by

$$
\left.T_{\mathrm{DW}}=\int_{\mathcal{B}} P\left[\omega^{(D W)}\right] \wedge e^{\tilde{\mathcal{F}}}=\mid \int_{\mathcal{B}} P\left[e^{3 A-\Phi} \hat{\Psi}_{2}\right)\right] \wedge e^{\tilde{\mathcal{F}}} \mid
$$

\Rightarrow The same expression for the superpotential is recovered!

D-terms and Fayet-Iliopoulos terms

For a $\mathrm{D} p$-brane wrapping an internal generalized cycle (Σ, \mathcal{F}), the D -term \mathcal{D} has the explicit form

$$
\mathcal{D} d^{n} \sigma=\left.\mu_{p} P\left[e^{2 A-\phi} \operatorname{Im} \hat{\Psi}_{1}\right] \wedge e^{\mathcal{F}}\right|_{\text {top }}
$$

Note that

$$
\xi \equiv 2 \pi \alpha^{\prime} \int_{\Sigma} \mathcal{D} d^{n} \sigma
$$

is constant under any continuous deformation of (Σ, \mathcal{F})
\Downarrow
The D-flatness condition $\mathcal{D}=0$ can be satisfied only if $\xi=0$.
Natural interpretation: ξ is the FI term of the lowest KK gauge field, which has no charged chiral fields.

FI terms and cosmic strings

We can obtain a D-brane cosmic string in the following way:

- Consider a D $\bar{D} p$-brane pair wrapping (Σ, \mathcal{F}) such that $\xi \neq 0$.
- By Sen's mechanism, a tachyonic vortex in the flat directions produces an effective string given by a $\mathrm{D}(p-2)$-brane wrapping the same cycle (Σ, \mathcal{F}) and filling only two flat directions.

$$
\Downarrow
$$

The tension of a BPS cosmic string produced in this way is given by

$$
T_{\text {string }}=\mu_{p-2} \int_{\Sigma} \omega^{(\text {string })} \wedge e^{\mathcal{F}}=2 \pi \xi
$$

Identical to the field-theory result of [Dvali, Kallosh \& Van Proeyen, '03].
Further evidence that: D-term strings $\leftrightarrow D$-brane strings

Some superpotentials for D-branes on $S U(3)$-structure backgrounds

If the internal space has $S U(3)$ structure (i.e. $\eta^{(1)}=e^{i \varphi_{1}} \eta$ and $\eta^{(2)}=e^{i \varphi_{2}} \eta$), then

$$
\hat{\psi}^{+}=-i e^{i\left(\varphi_{1}-\varphi_{2}\right)} e^{-i J} \quad, \quad \hat{\psi}^{-}=-e^{i\left(\varphi_{1}+\varphi_{2}\right)} \Omega
$$

- D5-brane

$$
\mathcal{W}=\frac{1}{2} \int_{\mathcal{B}} P\left[e^{3 A-\Phi} \Omega\right]
$$

thus reproducing the superpotential proposed by [Witten, '96]

- D6-brane

$$
\mathcal{W}=\int_{\mathcal{B}}\left\{P[J] \wedge \tilde{\mathcal{F}}+\frac{i}{2} P[J \wedge J]-\frac{i}{2} \tilde{\mathcal{F}} \wedge \tilde{\mathcal{F}}\right\}
$$

- D7-brane

$$
\mathcal{W}(\Sigma, \mathcal{F})=\frac{1}{2} \int_{\mathcal{B}} P\left[e^{3 A-\Phi} \Omega\right] \wedge \tilde{\mathcal{F}}
$$

See e.g. [Gomis, Marchesano \& Mateos '05; Marchesano '06] for examples where these superpotentials generate flux-induced masses for the geometrical moduli.

Probing the internal space with a D3-brane

- On more general IIB backgrounds, the integrable pure spinor has the form

$$
\hat{\Psi}^{-}=\hat{\Psi}_{(1)}^{-}+\hat{\Psi}_{(3)}^{-}+\hat{\Psi}_{(5)}^{-} \quad \text { with } \quad \hat{\Psi}_{(5)}^{-} \sim \star_{6} \hat{\Psi}_{(1)}^{-} .
$$

Thus,

$$
\hat{\Psi}_{(1)}^{-}(y)=d \mathcal{W}_{\mathrm{D} 3}(y)
$$

\Rightarrow the D3-brane superpotential is trivial iff the internal space has $S U(3)-$ structure!

- On $S U(3)$-structure backgrounds, one can still have a nontrivial D-term: $\mathcal{D}_{D 3}=\cos \left(\varphi_{1}-\varphi_{2}\right)$

D-flatness condition $\mathcal{D}_{\mathrm{D} 3}=0 \Leftrightarrow$ the internal space is a warped Calabi-Yau of the kind discussed by [Graña-Polchinski].

D7-brane on $S U(3)$ vacua and flux induced moduli lifting

$S U(3)$-structure IIB vacua \Rightarrow The internal space is complex and \exists holomorpic (3, 0) form $\Omega=e^{3 A-\Phi} \hat{\Psi}^{-}$.

The D7-brane superpotential is given by

$$
\begin{equation*}
\mathcal{W}(\Sigma, \mathcal{F})=\mathcal{W}_{0}+\frac{1}{2} \int_{\mathcal{B}} P[\Omega] \wedge \tilde{\mathcal{F}} \tag{4}
\end{equation*}
$$

$\delta \mathcal{W}(\Sigma, \mathcal{F})=0 \quad \Leftrightarrow \quad \Sigma$ holomorphically embedded and $\mathcal{F}_{(2,0)}=0$.
$h^{(2,0)}(\Sigma)$ possible massless chiral fields t^{i} associated to the deformations of the holomorphic cycle Σ generated by the $h^{(2,0)}(\Sigma)$ sections X^{i} of $\mathcal{N}_{\Sigma}^{\text {hol }}$.

We have $h^{(2,0)}(\Sigma)$ moduli lifting conditions [see also Gomis, Marchesano \& Mateos, 0506179]:

$$
\partial_{i} \mathcal{W}=\frac{1}{2} \int_{\Sigma} P_{\Sigma}\left[l_{X_{i}} \Omega\right] \wedge \mathcal{F}=0
$$

Furthermore, if $\left.T_{M}^{1,0}\right|_{\Sigma}=T_{\Sigma}^{1,0} \oplus \mathcal{N}_{\Sigma}^{\text {hol }}$ holomorphically, we have the H-induced masses

$$
\begin{equation*}
m_{i j}\left(t_{0}\right) \equiv\left(\partial_{i} \partial_{j} \mathcal{W}\right)\left(t_{0}\right)=\frac{1}{2} \int_{\Sigma_{0}} P_{\Sigma_{0}}\left[\imath_{X_{i}} \Omega \wedge \imath_{X_{j}} H\right] \tag{5}
\end{equation*}
$$

Holomorphicity and symplectic structure

If \mathcal{C} is the configuration space of the generalized cycles (Σ, \mathcal{F}), it is possible to introduce an almost complex structure \mathbb{J} on \mathcal{C} such that

$$
\begin{equation*}
\left.\left.X \in T_{\mathcal{C}}^{0,1}\right|_{(\Sigma, \mathcal{F})} \quad \Rightarrow \quad X(\mathcal{W})\right|_{(\Sigma, \mathcal{F})} \equiv 0 \tag{6}
\end{equation*}
$$

Then, the superpotential \mathcal{W} is 'holomorphic' with respect to \mathbb{J}.
It is also possible to introduce a formal symplectic structure \equiv on \mathcal{C} such that the deriving moment map $m(\Sigma, \mathcal{F})$ generating the world-volume gauge transformations coincides with the D-term \mathcal{D}.

The above almost complex and symplectic structures reproduce the known ones in the pure CY case.

Like in that case, they are not trivially integrable and do not combine in a Kähler structure!

Generalized complex geometry [Hitchin, Gualtieri]

Algebraic level

Consider $T_{M} \oplus T_{M}^{\star}$ instead of T_{M}.

- Natural metric $\mathcal{I}(X+\xi, X+\xi)=\xi(X)$ of signature $(6,6)$ \Rightarrow Structure group $S O(6,6)$
- Generalized almost complex structure

$$
\mathcal{J}: T_{M} \oplus T_{M}^{\star} \rightarrow T_{M} \oplus T_{M}^{\star}
$$

such that $\mathcal{J}^{2}=-1$ and $\mathcal{J}^{T} \mathcal{I} \mathcal{J}=\mathcal{I}$
\Rightarrow Reduction of the structure group to $U(3,3)$.

- $\Lambda^{\bullet} T^{\star}=\bigoplus_{k} \Lambda^{k} T^{\star}$ is the associated spinor bundle, where the action of $X+\xi \in T_{M} \oplus T_{M}^{\star}$ as "gamma matrix" is given by

$$
(X+\xi) \cdot \omega=\left(\imath_{X}+\xi \wedge\right) \omega \quad \text { where } \quad \omega \in \Lambda^{\bullet} T^{\star}
$$

- A spinor $\varphi \in \Lambda^{\bullet} T_{M}^{\star}$ is pure if it's null space $L_{\varphi} \subset T_{M} \oplus T_{M}^{\star}$ is of maximal dimension 6
- A globally defined pure spinor $\varphi \in C^{\infty}\left(\Lambda^{\bullet} T_{M}^{\star} \otimes \mathbb{C}\right)$ such that $L_{\varphi} \cap \bar{L}_{\varphi}=0$ (real index zero) defines a generalized almost complex structure \mathcal{J}, whose $+i$ eigenspace is given by L_{φ} (reduction of the structure group to $S U(3,3)$).
- In $\mathcal{N}=1$ backgrounds, Ψ^{+}and Ψ^{-}are pure spinors and their null spaces are of real index zero and have common three dimensional subspace
\Rightarrow structure group further reduced to $S U(3) \times S U(3)$

$$
\Downarrow
$$

Our $\mathcal{N}=1$ backgrounds have $S U(3) \times S U(3)$-structure group on $T_{M} \oplus T_{M}^{\star}$ \Rightarrow This reduced structure group defines also the metric g on M, since

$$
G=-\mathcal{I} \mathcal{J}_{+} \mathcal{J}_{-}=\left(\begin{array}{cc}
g & 0 \tag{7}\\
0 & g^{-1}
\end{array}\right)
$$

G is a positive definite metric on $T_{M} \oplus T_{M}^{\star}$.

Generalized complex geometry

- Usual integrability condition for an almost complex structure $J: T_{M} \rightarrow T_{M}$, $J^{2}=-1$ is that its $+i$ eigenspace is involutive:

$$
\begin{equation*}
N i j(X, Y) \simeq(1+i J)[(1-i J) X,(1-i J) Y]_{L i e}=0 \tag{8}
\end{equation*}
$$

- Analogous integrability condition for $\mathcal{J}: T_{M} \oplus T_{M}^{\star} \rightarrow T_{M} \oplus T_{M}^{\star}$, with $[.,]_{\text {Lie }}$ substituted by the (twisted) Courant bracket
$[X+\xi, Y+\eta]_{\text {Courant }}=[X, Y]_{\text {Lie }}+\mathcal{L}_{X} \eta-\mathcal{L}_{Y} \xi-\frac{1}{2} d\left(\imath_{X} \eta-\imath_{T} \xi\right)+\imath_{Y} \imath_{X} H$.
- If a pure spinor φ is d_{H}-closed $\left(d_{H}=d+H \wedge\right)$
\Rightarrow the associated generalized almost complex structure \mathcal{J} is integrable

$$
\Downarrow
$$

The susy condition $d_{H}\left(e^{2 A-\Phi} \Psi^{ \pm}\right)=0$ for IIA/IIB tells us that the internal space M is a generalized complex manifold. Since $\psi^{ \pm}$are globally defined M is a generalized Calabi-Yau structure as defined by Hitchin.

Main subcases

- Complex case

In this case $\varphi \propto \theta_{1} \wedge \theta_{2} \wedge \theta_{3}$ where $\theta_{i}, \bar{\theta}_{i}$ linearly independent $(\varphi \wedge \bar{\varphi} \neq 0)$. Then

$$
\mathcal{J}=\left(\begin{array}{cc}
-J & 0 \tag{10}\\
0 & J^{t}
\end{array}\right)
$$

The integrability condition $d_{H} \varphi=0$ implies that

- J is an integrable complex structure,
- φ is a holomorphic (3,0)-form (\mathcal{K}_{M} is trivial)
- and $H^{(3,0)}=H^{(0,3)}=0$.
- Symplectic case

In this case $\varphi \propto e^{i \omega}$. In this case

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & -\omega^{-1} \tag{11}\\
\omega & 0
\end{array}\right)
$$

The condition $d_{H} \varphi=0$ now implies that $d \omega=0$ (symplectic) and $H=0$

More generally one obtains a hybrid complex-symplectic structure which locally admits hybrid complex-symplectic coordinates (generalized Darboux theorem [Gualtieri]).

$\mathcal{N}=1$ vacua with $S U(3)$ structure: $\eta^{(1)}=a \eta$ and $\eta^{(2)}=b \eta$

- Introduce hermitian almost complex structure $J_{m n}=-i \eta_{+}^{\dagger} \hat{\gamma}_{m n} \eta_{+}$and $(3,0)$ form $\Omega_{m n p}=-i \eta_{-}^{\dagger} \hat{\gamma}_{m n p} \eta_{+}$. These are such that

$$
\frac{1}{3!} J \wedge J \wedge J=\frac{i}{8} \Omega \wedge \bar{\Omega} \quad, \quad J \wedge \Omega=0
$$

- Then the integrable spinors are:

$$
\begin{array}{r}
\Psi^{+}=\frac{a \bar{b}}{8} e^{-i J} \quad(\text { IIA }), \quad \tag{12}\\
\\
\\
\\
\\
\\
\end{array}
$$

For the $S U(3)$-structure subcase, the internal manifold M is symplectic in type IIA and complex in type IIB

More generally the generalized complex structure of M implies a local $2 d+4 d$ splitting. For example, in the static $S U(2)$ case $\left(\eta^{(1)} \perp \eta^{(2)}\right)$ one has

$$
\begin{array}{ll}
\Psi^{+} \propto e^{i \omega_{(2 d)}} \wedge \Omega_{(4 d)}, & \text { IIA } \\
\Psi^{-} \propto e^{i \omega_{(4 d)}} \wedge \Omega_{(2 d)}, & \text { IIB }
\end{array}
$$

