RTN meeting, Napoli, 9-14 October 2006

Supersymmetric D-branes on flux backgrounds

Luca Martucci (ITF, K. U. Leuven)

Based on:

- L. M. & P. Smyth, hep-th/0507099
- L. M., hep-th/0602129
- P. Koerber & L. M., hep-th/0610044

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Introduction

 $\mathcal{N} = 1$ D-calibrated backgrounds and supersymmetric D-branes

 $\mathcal{N}=1$ description of space-time filling D-branes

Deformations of calibrated D-branes

Future directions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ◆ ○ へ ⊙

D-branes on backgrounds with reduced supersymmetry play a central role in many string theory models.

In CY_3 compactifications to four dimensions ($\mathcal{N} = 2$), D-brane physics is (relatively) well understood \rightarrow key role of the underling integrable complex and Kähler structures.

In $\mathcal{N} = 1$ flux compactifications the CY's geometrical properties are generically lost and with them the related D-brane properties.

Question addressed in this talk:

Is it possible to describe (some of) the properties of D-branes on Type II $\mathcal{N} = 1$ backgrounds, keeping the analysis on very general grounds?

A calibration in a certain supersymmetric background contains informations about the supersymmetric branes the background admits:

Supersymmetric branes on purely geometric backgrounds (like CY spaces) are naturally *volume minimizing* [Becker, Becker & Strominger, '95] and then calibrated in the standard sense of [Harvey & Lawson, '82]. A calibration is a *p*-form $\omega_{(p)}$ such that

 $d\omega_{(p)} = 0$ and $P_{\Sigma}[\omega_{(p)}] \leq \sqrt{P_{\Sigma}[g]} d^{p} \sigma$ for any *p*-submanifold Σ

► For branes with minimal action $\int \sqrt{-g} + \int A$ on backgrounds with nontrivial flux F = dA, the background calibration is naturally *energy minimizing* [Gutowski, Papadopoulos & Townsend, '99]. This notion has been used and extended e.g. by [Gauntlett, Kim, Martelli, Waldram, Pakis, Sparks, Cascales, Uranga,...]

D-branes contains a world-volume field-strength \mathcal{F} (such that $d\mathcal{F} = P[H]$). The notion of calibration requires a further generalization for more general background and D-brane flux-configurations!

Generalized calibrations for generalized cycles

[See also P. Koerber, hep-th/0506154]

- ► For a D-brane with energy density \mathcal{E} , we define a *generalized calibration* on our internal manifold as a polyform $\omega = \sum_k \omega_{(k)}$ such that
 - Algebraic condition: $P_{\Sigma}[\omega] \wedge e^{\mathcal{F}}|_{\text{top}} \leq \mathcal{E}(\Sigma, \mathcal{F})$, for any generalized cycle (Σ, \mathcal{F})
 - Differential condition: $d_H \omega \equiv (d + H \wedge) \omega = 0$.
- A D-brane wraps a *generalized calibrated cycle* (Σ, \mathcal{F}) iff

$$P_{\Sigma}[\omega] \wedge e^{\mathcal{F}}|_{\mathrm{top}} = \mathcal{E}(\Sigma, \mathcal{F}) \ .$$

 A D-brane wrapping a generalized calibrated cycle (Σ, F) is then energy minimizing under continuous deformations, i.e. for any (Σ', F') continuously connected to (Σ, F)

$$E(\Sigma, \mathcal{F}) \leq E(\Sigma', \mathcal{F}')$$

General Type II vacua preserving 4d Poincaré invariance and 4d $\mathcal{N} = 1$ supersymmetry:

metric:
$$ds^{2} = e^{2A(y)} dx^{\mu} dx_{\mu} + \dots$$

Killing spinors: $\varepsilon_{1}(y) = \zeta_{+} \otimes \eta_{+}^{(1)}(y) + \text{ c. c.}$
 $\varepsilon_{2}(y) = \zeta_{+} \otimes \eta_{\mp}^{(2)}(y) + \text{ c. c.}$ (1)

Introduce the polyforms $\hat{\Psi}_1 = \hat{\Psi}^{\mp}$ and $\hat{\Psi}_2 = \hat{\Psi}^{\pm}$ in IIA/IIB defined by Clifford associated bispinors

$$\eta_{\pm}^{(1)} \otimes \eta_{\pm}^{(2)\dagger} \sim \sum_{k=even/odd} \frac{1}{k!} \hat{\Psi}_{m_1...m_k}^{\pm} \hat{\gamma}^{m_1...m_k} \quad \leftrightarrow \quad \hat{\Psi}^{\pm} = \sum_{n=even,odd} \hat{\Psi}_{(n)}^{\pm}$$

The supersymmetry condition can be completely written in terms of equations for $\hat{\Psi}_1$ and $\hat{\Psi}_2$ [Graña, Minasian, Petrini & Tomasiello, hep-th/0505212].

$\mathcal{N} = 1$ background supersymmetry and calibrations

We restrict to *D-calibrated* backgrounds, i.e. $||\eta^{(1)}|| = ||\eta^{(2)}|| \rightarrow \text{most general}$ $\mathcal{N} = 1$ backgrounds admitting static supersymmetric D-branes

Explicit form of the calibrations:

$$\begin{aligned} \omega^{(\text{4d})} &= e^{4A} \left(e^{-\Phi} \text{Re} \hat{\Psi}_1 - \tilde{C} \right) & \text{space-time filling branes} \\ \omega^{(\text{string})} &= e^{2A - \Phi} \text{Im} \hat{\Psi}_1 & \text{strings} \\ \omega^{(\text{DW})} &= e^{3A - \Phi} \text{Re} \left(e^{i\theta} \hat{\Psi}_2 \right) & \text{domain walls} \end{aligned}$$

They satisfy the algebraic condition for generalized calibrations.

Differential condition $d_H \omega = 0 \Leftrightarrow$ background Killing spinor conditions!

 κ -symmetry \Rightarrow Supersymmetric D-branes wrap calibrated generalized cycles

For example, in the Calabi-Yau subcase the generalized calibrations are $\omega^{(\text{even})} = \text{Re}(e^{i\theta}e^{-iJ}), \ \omega^{(\text{odd})} = \text{Re}(e^{i\theta}\Omega)$, and the calibration condition reproduces the supersymmetry conditions found by [Mariño, Minasian, Moore & Strominger, '99]

Relation with Hitchin's and Gualtieri's generalized complex geometry

[Graña, Minasian, Petrini & Tomasiello, hep-th/0505212]

From domain wall calibrations we learn that

 $d_H(e^{3A-\Phi}\hat{\Psi}_2)=0$

₩

Since $\hat{\Psi}_2$ is a pure spinor, the associated *generalized complex structure* \mathcal{J}_2 is integrable \Rightarrow the internal manifold *M* is a Hitchin's *generalized Calabi-Yau*

 $\hat{\Psi}_1$ is also pure but the RR-fields provide an obstruction to the integrability of the associated generalized almost complex structure \mathcal{J}_1 .

F and D-terms from the effective action

For a space-time filling D-brane wrapping a generalized *n*-cycle (Σ , \mathcal{F}) define

$$\mathcal{W}_m d\sigma^1 \wedge \ldots \wedge d\sigma^n = P_{\Sigma} [e^{3A - \Phi} (\iota_m + g_{mk} dy^k \wedge) \hat{\Psi}_2] \wedge e^{\mathcal{F}}|_{\text{top}} ,$$

$$\mathcal{D} d\sigma^1 \wedge \ldots \wedge d\sigma^n = P_{\Sigma} [e^{2A - \Phi} \text{Im} \hat{\Psi}_1] \wedge e^{\mathcal{F}}|_{\text{top}} .$$

The D-brane (with the appropriate orientation) is supersymmetric (i.e. calibrated) iff

 $\mathcal{W}_m = 0$, F - flatness , $\mathcal{D} = 0$, D - flatness .

The identification W_m and D as F and D-terms comes from the expansion of DBI+CS action and susy transformations of the fermions around a susy configuration.

Furthermore, note that F-flatness $\Leftrightarrow (\Sigma, \mathcal{F})$ is a generalized complex submanifold

Simplest examples: Lagrangian and holomorphic cycles with $\mathcal{F}_{0,2} = 0$ are generalized complex submanifolds in symplectic and complex spaces respectively.

The superpotential

The superpotential is given by

$$\mathcal{W}(\Sigma,\mathcal{F}) = \int_{\mathcal{B}} P[e^{3A-\Phi}\hat{\Psi}_2] \wedge e^{\tilde{\mathcal{F}}} + \text{ constant },$$

where $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolates between a fixed $(\Sigma_0, \mathcal{F}_0)$ and (Σ, \mathcal{F}) .

For a general deformation of (Σ, \mathcal{F})

 $\delta \mathcal{W} = 0 \quad \Leftrightarrow \quad \text{F-flatness conditions } \mathcal{W}_m = 0$

The same expression from the tension a DW given by a D-brane filling three flat directions and wrapping an internal generalized chain $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolating between $(\Sigma_0, \mathcal{F}_0)$ and (Σ, \mathcal{F})

$$T_{\rm DW} = 2|\Delta \mathcal{W}| = \int_{\mathcal{B}} P[\omega^{(DW)}] \wedge e^{\tilde{\mathcal{F}}} = \left| \int_{\mathcal{B}} P[e^{3A - \Phi} \hat{\Psi}_2] \wedge e^{\tilde{\mathcal{F}}} \right|.$$

Generalized forms on D-branes

The general infinitesimal deformation of (Σ, \mathcal{F}) is described by a section of the *generalized normal bundle*:

 $\mathcal{N}_{(\Sigma,\mathcal{F})} \equiv (T_M \oplus T_M^{\star})|_{\Sigma}/T_{(\Sigma,\mathcal{F})}$.

where $T_{(\Sigma,\mathcal{F})}$ is the generalized tangent bundle.

We can use \mathcal{J}_2 to split $\mathcal{N}_{(\Sigma,\mathcal{F})} \otimes \mathbb{C} = \mathcal{N}^{1,0}_{(\Sigma,\mathcal{F})} \oplus \mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})}$ and one can define a differential

$$d_{(\Sigma,\mathcal{F})}: \Gamma(\Lambda^k\mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})}) \to \Gamma(\Lambda^{k+1}\mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})})$$

and the associated cohomology groups

$$H^{k}(\Sigma, \mathcal{F}) \equiv \ker (d_{(\Sigma, \mathcal{F})}|_{k}) / \operatorname{im} (d_{(\Sigma, \mathcal{F})}|_{k-1})$$

From the DBI-action, it is possible to introduce a metric *G* depending on $\hat{\Psi}_1$ on sections of $\Lambda^k \mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})}$ and thus a codifferential

$$d^{\dagger}_{(\Sigma,\mathcal{F})}: \Gamma(\Lambda^k\mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})}) \to \Gamma(\Lambda^{k-1}\mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})})$$

Deformations of calibrated generalized cycles

Consider an infinitesimal deformation given by $\mathbb{X}^{0,1} \in \Gamma(\mathcal{N}^{0,1}_{(\Sigma,\mathcal{F})})$. Then

• F-flatness ((Σ , \mathcal{F}) generalized complex):

$$d_{(\Sigma,\mathcal{F})}\mathbb{X}^{0,1}=0$$

Complexified D-flatness (including gauge-fixing):

$$d^{\dagger}_{(\Sigma,\mathcal{F})}\mathbb{X}^{0,1}=0$$

Thus

$$\Delta_{(\Sigma,\mathcal{F})}\mathbb{X}^{0,1} = 0 \quad \text{where} \quad \Delta_{(\Sigma,\mathcal{F})} \equiv d_{(\Sigma,\mathcal{F})}d^{\dagger}_{(\Sigma,\mathcal{F})} + d^{\dagger}_{(\Sigma,\mathcal{F})}d_{(\Sigma,\mathcal{F})}.$$

The complexified D-flatness condition provides a gauge-fixing for the \mathcal{J}_2 -complexified world-volume gauge transformations

$$\mathbb{X}^{0,1} \to \mathbb{X}^{0,1} + d_{(\Sigma,\mathcal{F})}\lambda .$$
⁽²⁾

Thus,

massless fluctuations
$$= H^1(\Sigma, \mathcal{F})$$
 (3)

Consistent with BRST cohomology of topological branes in GC spaces, which is given by $H^{\bullet}(\Sigma, \mathcal{F})$ [Kapustin & Li, hep-th/0501071].

A simple example: D3-brane on β -deformed complex manifold

Consider a complex manifold M with holomorphic (3,0) form Ω . A β deformation is given by $\beta \in H^0(\Lambda^2 T_{M}^{1,0})$, with $[\beta, \beta] = 0$ and gives a type 1 pure spinor

 $e^{3A-\Phi}\hat{\Psi}_2 = \iota_eta\Omega + \Omega \quad \Rightarrow \quad d\mathcal{W}_{\mathrm{D3}} = \iota_eta\Omega \,.$

Suppose to have a 0-cycle (D3-brane) at $z_0 \in M$. We have that

F-flatness $\Leftrightarrow \iota_{\beta}\Omega|_{z_0} = 0 \quad \Leftrightarrow \quad \beta|_{z_0} = 0$.

Thus, the D3-brane must be located at a point were the *type jumps to* 3 ($\psi|_{z_0} = \Omega$). The differential complex is given by $\alpha \in \Lambda^k T_M^{1,0}|_{z_0}$, with differential acting as follows

$$d_{\{z_0\}}lpha=-\partialeta|_{z_0}\circlpha\equiv-rac{1}{2(k-1)!}\partial_leta^{i_1i_2}lpha^{i_3\ldots i_{k+1}}\partial_{i_1}\wedge\ldots\wedge\partial_{i_{k+1}}|_{z_0}\ .$$

One thus obtains

$$H^1(\{z_0\}) = \{X \in T^{1,0}_M|_{z_0}: \partial eta|_{z_0} \circ X = 0\} \;.$$

More directly, from the D3-brane superpotential,

$$\partial_i\partial_j\mathcal{W}_{\mathrm{D3}}|_{z_0}=\partial_i(e^{3A-\Phi}\hat{\Psi}_2)_j|_{z_0}=rac{1}{2}(\partial_ieta^{kl})\Omega_{klj}|_{z_0}\ .$$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

- Global properties of the moduli space and higher order obstructions?
- How to extract the effective superpotential $W_{\text{eff}}(\phi)$ for the massless fluctuations from the geometrical superpotential $W(\Sigma, \mathcal{F})$?

- Coupling to closed string sector [Grana, Louis & Waldram '05; Benmachiche & Grimm '06]?
- Interesting nontrivial explicit realizations?

▶ ...

◆□▶ ◆圖▶ ◆国▶ ◆国▶ 三回 のへで

Superpotentials from domain walls

Consider a BPS DW interpolating between two vacua $(\Sigma_1, \mathcal{F}_1)$ and $(\Sigma_2, \mathcal{F}_2)$. From field theory arguments [Cvetic et al., '91; Abraham & Townsend, '91] its tension is given by

$$T_{\rm DW} = 2|\Delta \mathcal{W}|$$
.

In the D-brane realization, this DW is given by a D-brane filling three flat directions and wrapping an internal generalized chain $(\mathcal{B}, \tilde{\mathcal{F}})$ interpolating between $(\Sigma_1, \mathcal{F}_1)$ and $(\Sigma_2, \mathcal{F}_2)$.

∜

The tension is given by

$$T_{\mathrm{DW}} = \int_{\mathcal{B}} P[\omega^{(DW)}] \wedge e^{\tilde{\mathcal{F}}} = \big| \int_{\mathcal{B}} P[e^{3A - \Phi} \hat{\Psi}_2)] \wedge e^{\tilde{\mathcal{F}}} \big| .$$

 \Rightarrow The same expression for the superpotential is recovered!

D-terms and Fayet-Iliopoulos terms

For a D*p*-brane wrapping an internal generalized cycle (Σ , F), the D-term D has the explicit form

$$\mathcal{D}d^n\sigma ~~=~~ \mu_p P[e^{2A-\Phi}\mathrm{Im}\hat{\Psi}_1]\wedge e^{\mathcal{F}}ert_{\mathrm{top}}~.$$

Note that

$$\xi \equiv 2\pi \alpha' \int_{\Sigma} \mathcal{D} d^n \sigma$$

is constant under any continuous deformation of (Σ, \mathcal{F})

₩

The D-flatness condition $\mathcal{D} = 0$ can be satisfied only if $\xi = 0$.

Natural interpretation: ξ is the FI term of the lowest KK gauge field, which has no charged chiral fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

We can obtain a D-brane cosmic string in the following way:

- Consider a $D\overline{D}p$ -brane pair wrapping (Σ, \mathcal{F}) such that $\xi \neq 0$.
- ▶ By Sen's mechanism, a tachyonic vortex in the flat directions produces an effective string given by a D(p 2)-brane wrapping the same cycle (Σ , \mathcal{F}) and filling only two flat directions.

∜

The tension of a BPS cosmic string produced in this way is given by

$$T_{
m string} = \mu_{p-2} \int_{\Sigma} \omega^{(
m string)} \wedge e^{\mathcal{F}} = 2\pi \xi \; .$$

Identical to the field-theory result of [Dvali, Kallosh & Van Proeyen, '03].

Further evidence that: *D-term strings* \leftrightarrow *D-brane strings*

Some superpotentials for D-branes on SU(3)-structure backgrounds

If the internal space has SU(3) structure (i.e. $\eta^{(1)} = e^{i\varphi_1}\eta$ and $\eta^{(2)} = e^{i\varphi_2}\eta$), then

$$\hat{\Psi}^+ = -ie^{i(\varphi_1-\varphi_2)}e^{-iJ}$$
 , $\hat{\Psi}^- = -e^{i(\varphi_1+\varphi_2)}\Omega$.

► D5-brane

$$\mathcal{W} = \frac{1}{2} \int_{\mathcal{B}} P[e^{3A - \Phi} \Omega] ,$$

thus reproducing the superpotential proposed by [Witten, '96]

► D6-brane

$$\mathcal{W} = \int_{\mathcal{B}} \left\{ P[J] \wedge \tilde{\mathcal{F}} + rac{i}{2} P[J \wedge J] - rac{i}{2} \tilde{\mathcal{F}} \wedge \tilde{\mathcal{F}}
ight\}$$

► D7-brane

$$\mathcal{W}(\Sigma,\mathcal{F}) = rac{1}{2}\int_{\mathcal{B}} P[e^{3A-\Phi}\Omega]\wedge \tilde{\mathcal{F}} \ .$$

See e.g. [Gomis, Marchesano & Mateos '05; Marchesano '06] for examples where these superpotentials generate flux-induced masses for the geometrical moduli.

Probing the internal space with a D3-brane

On more general IIB backgrounds, the integrable pure spinor has the form

$$\hat{\Psi}^- = \hat{\Psi}^-_{(1)} + \hat{\Psi}^-_{(3)} + \hat{\Psi}^-_{(5)} \qquad \text{with} \qquad \hat{\Psi}^-_{(5)} \sim \star_6 \hat{\Psi}^-_{(1)} \; .$$

Thus,

$$\hat{\Psi}^{-}_{(1)}(y) = d\mathcal{W}_{\mathrm{D3}}(y)$$

 \Rightarrow the D3-brane superpotential is trivial iff the internal space has SU(3)-structure!

• On SU(3)-structure backgrounds, one can still have a nontrivial D-term: $\mathcal{D}_{D3} = \cos(\varphi_1 - \varphi_2)$

D-flatness condition $\mathcal{D}_{D3} = 0 \Leftrightarrow$ the internal space is a warped Calabi-Yau of the kind discussed by [Graña-Polchinski].

D7-brane on SU(3) vacua and flux induced moduli lifting

SU(3)-structure IIB vacua \Rightarrow The internal space is *complex* and \exists holomorpic (3,0) form $\Omega = e^{3A-\Phi}\hat{\Psi}^-$.

The D7-brane superpotential is given by

$$\mathcal{W}(\Sigma,\mathcal{F}) = \mathcal{W}_0 + \frac{1}{2} \int_{\mathcal{B}} P[\Omega] \wedge \tilde{\mathcal{F}} .$$
(4)

 $\delta \mathcal{W}(\Sigma, \mathcal{F}) = 0 \quad \Leftrightarrow \quad \Sigma \text{ holomorphically embedded and } \mathcal{F}_{(2,0)} = 0.$

 $h^{(2,0)}(\Sigma)$ possible massless chiral fields t^i associated to the deformations of the holomorphic cycle Σ generated by the $h^{(2,0)}(\Sigma)$ sections X^i of $\mathcal{N}_{\Sigma}^{\text{hol}}$.

We have $h^{(2,0)}(\Sigma)$ moduli lifting conditions [see also Gomis, Marchesano & Mateos, 0506179]:

$$\partial_i \mathcal{W} = rac{1}{2} \int_{\Sigma} P_{\Sigma}[\imath_{X_i} \Omega] \wedge \mathcal{F} = 0$$

Furthermore, if $T_M^{1,0}|_{\Sigma} = T_{\Sigma}^{1,0} \oplus \mathcal{N}_{\Sigma}^{\text{hol}}$ holomorphically, we have the *H*-induced masses

$$m_{ij}(t_0) \equiv (\partial_i \partial_j \mathcal{W})(t_0) = \frac{1}{2} \int_{\Sigma_0} P_{\Sigma_0}[\imath_{X_i} \Omega \wedge \imath_{X_j} H] .$$
⁽⁵⁾

If C is the configuration space of the generalized cycles (Σ, \mathcal{F}) , it is possible to introduce an *almost* complex structure \mathbb{J} on C such that

$$X \in T_{\mathcal{C}}^{0,1}|_{(\Sigma,\mathcal{F})} \quad \Rightarrow \quad X(\mathcal{W})|_{(\Sigma,\mathcal{F})} \equiv 0.$$
(6)

Then, the superpotential \mathcal{W} is 'holomorphic' with respect to \mathbb{J} .

It is also possible to introduce a formal symplectic structure Ξ on C such that the deriving moment map $m(\Sigma, \mathcal{F})$ generating the world-volume gauge transformations coincides with the D-term \mathcal{D} .

The above almost complex and symplectic structures reproduce the known ones in the pure CY case.

Like in that case, they are not trivially integrable and do not combine in a Kähler structure!

Generalized complex geometry [Hitchin, Gualtieri] Algebraic level

Consider $T_M \oplus T_M^*$ instead of T_M .

- ► Natural metric $\mathcal{I}(X + \xi, X + \xi) = \xi(X)$ of signature (6, 6) ⇒ Structure group SO(6, 6)
- Generalized almost complex structure

$$\mathcal{J}: T_M \oplus T_M^\star \to T_M \oplus T_M^\star$$
,

such that $\mathcal{J}^2 = -1$ and $\mathcal{J}^T \mathcal{I} \mathcal{J} = \mathcal{I}$ \Rightarrow Reduction of the structure group to U(3,3).

• $\Lambda^{\bullet}T^{\star} = \bigoplus_k \Lambda^k T^{\star}$ is the associated spinor bundle, where the action of $X + \xi \in T_M \oplus T_M^{\star}$ as "gamma matrix" is given by

$$(X + \xi) \cdot \omega = (\imath_X + \xi \wedge) \omega$$
 where $\omega \in \Lambda^{\bullet} T^{\star}$

► A spinor $\varphi \in \Lambda^{\bullet} T_M^{\star}$ is *pure* if it's null space $L_{\varphi} \subset T_M \oplus T_M^{\star}$ is of maximal dimension 6

- A globally defined pure spinor $\varphi \in C^{\infty}(\Lambda^{\bullet}T^{\star}_{M} \otimes \mathbb{C})$ such that $L_{\varphi} \cap \overline{L}_{\varphi} = 0$ (real index zero) defines a generalized almost complex structure \mathcal{J} , whose +i eigenspace is given by L_{φ} (reduction of the structure group to SU(3,3)).
- In N = 1 backgrounds, Ψ⁺ and Ψ⁻ are pure spinors and their null spaces are of real index zero and have common three dimensional subspace ⇒ structure group further reduced to SU(3) × SU(3)

∜

Our $\mathcal{N} = 1$ backgrounds have $SU(3) \times SU(3)$ -structure group on $T_M \oplus T_M^*$ \Rightarrow This reduced structure group defines also the metric *g* on *M*, since

$$G = -\mathcal{I}\mathcal{J}_{+}\mathcal{J}_{-} = \begin{pmatrix} g & 0\\ 0 & g^{-1} \end{pmatrix} .$$
⁽⁷⁾

G is a positive definite metric on $T_M \oplus T_M^*$.

Generalized complex geometry Differential level

▶ Usual integrability condition for an almost complex structure $J : T_M \to T_M$, $J^2 = -1$ is that its +*i* eigenspace is involutive:

$$Nij(X,Y) \simeq (1+iJ)[(1-iJ)X,(1-iJ)Y]_{Lie} = 0$$
(8)

▶ Analogous integrability condition for $\mathcal{J} : T_M \oplus T_M^* \to T_M \oplus T_M^*$, with $[.,.]_{Lie}$ substituted by the (*twisted*) Courant bracket

$$[X + \xi, Y + \eta]_{Courant} = [X, Y]_{Lie} + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d(\imath_X \eta - \imath_T \xi) + \imath_Y \imath_X H.$$
(9)

• If a pure spinor φ is d_H -closed ($d_H = d + H \wedge$) \Rightarrow the associated generalized almost complex structure \mathcal{J} is *integrable*

₩

The susy condition $d_H(e^{2A-\Phi}\Psi^{\pm}) = 0$ for IIA/IIB tells us that the internal space *M* is a *generalized complex manifold*. Since Ψ^{\pm} are globally defined *M* is a *generalized Calabi-Yau structure* as defined by Hitchin.

Main subcases

Complex case

In this case $\varphi \propto \theta_1 \wedge \theta_2 \wedge \theta_3$ where $\theta_i, \overline{\theta}_i$ linearly independent ($\varphi \wedge \overline{\varphi} \neq 0$). Then

$$\mathcal{J} = \left(\begin{array}{cc} -J & 0\\ 0 & J^t \end{array}\right) \,. \tag{10}$$

The integrability condition $d_H \varphi = 0$ implies that

- J is an integrable complex structure,
- φ is a holomorphic (3, 0)-form (\mathcal{K}_M is trivial)

• and
$$H^{(3,0)} = H^{(0,3)} = 0$$
.

Symplectic case In this case $\varphi \propto e^{i\omega}$. In this case

$$\mathcal{J} = \left(\begin{array}{cc} 0 & -\omega^{-1} \\ \omega & 0 \end{array}\right) \,. \tag{11}$$

The condition $d_H \varphi = 0$ now implies that $d\omega = 0$ (symplectic) and H = 0

More generally one obtains a hybrid complex-symplectic structure which locally admits hybrid complex-symplectic coordinates (*generalized Darboux theorem* [Gualtieri]).

 $\mathcal{N} = 1$ vacua with SU(3) structure: $\eta^{(1)} = a\eta$ and $\eta^{(2)} = b\eta$

• Introduce hermitian almost complex structure $J_{mn} = -i\eta^{\dagger}_{+}\hat{\gamma}_{mn}\eta_{+}$ and (3,0) form $\Omega_{mnp} = -i\eta^{\dagger}_{-}\hat{\gamma}_{mnp}\eta_{+}$. These are such that

$$rac{1}{3!}J\wedge J\wedge J=rac{i}{8}\Omega\wedge ar\Omega \quad,\quad J\wedge \Omega=0$$

Then the integrable spinors are:

$$\Psi^{+} = \frac{a\bar{b}}{8}e^{-iJ} \quad \text{(IIA)}, \quad \Psi^{-} = -\frac{iab}{8}\Omega \quad \text{(IIB)}$$
(12)

∜

For the SU(3)-structure subcase, the internal manifold M is *symplectic* in type IIA and *complex* in type IIB

More generally the generalized complex structure of *M* implies a local 2d + 4d splitting. For example, in the static SU(2) case $(\eta^{(1)} \perp \eta^{(2)})$ one has

$$\Psi^+ \propto e^{i\omega_{(2d)}} \wedge \Omega_{(4d)} , \quad {
m IIA} \ \Psi^- \propto e^{i\omega_{(4d)}} \wedge \Omega_{(2d)} , \quad {
m IIB}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへの