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Introduction

D-branes on backgrounds with reduced supersymmetry play a central role in many
string theory models.

In CY3 compactifications to four dimensions (N = 2), D-brane physics is (relatively)
well understood → key role of the underling integrable complex and Kähler
structures.

In N = 1 flux compactifications the CY’s geometrical properties are generically lost
and with them the related D-brane properties.

Question addressed in this talk:
Is it possible to describe (some of) the properties of D-branes on Type II N = 1
backgrounds, keeping the analysis on very general grounds?



A brief introduction on calibrations

A calibration in a certain supersymmetric background contains informations about
the supersymmetric branes the background admits:

I Supersymmetric branes on purely geometric backgrounds (like CY spaces) are
naturally volume minimizing [Becker, Becker & Strominger, ‘95] and then
calibrated in the standard sense of [Harvey & Lawson, ‘82]. A calibration is a
p-form ω(p) such that

dω(p) = 0 and PΣ[ω(p)] ≤
p

PΣ[g]dpσ for any p-submanifold Σ

I For branes with minimal action
R √

−g +
R

A on backgrounds with nontrivial
flux F = dA, the background calibration is naturally energy minimizing
[Gutowski, Papadopoulos & Townsend, ‘99]. This notion has been used and
extended e.g. by [Gauntlett, Kim, Martelli, Waldram, Pakis, Sparks, Cascales,
Uranga,. . . ]

D-branes contains a world-volume field-strength F (such that dF = P[H]). The
notion of calibration requires a further generalization for more general background
and D-brane flux-configurations!



Generalized calibrations for generalized cycles
[See also P. Koerber, hep-th/0506154]

I For a D-brane with energy density E , we define a generalized calibration on our
internal manifold as a polyform ω =

P
k ω(k) such that

I Algebraic condition:
PΣ[ω] ∧ eF |top ≤ E(Σ,F) , for any generalized cycle (Σ,F)

I Differential condition: dHω ≡ (d + H∧)ω = 0 .

I A D-brane wraps a generalized calibrated cycle (Σ,F) iff

PΣ[ω] ∧ eF |top = E(Σ,F) .

I A D-brane wrapping a generalized calibrated cycle (Σ,F) is then energy
minimizing under continuous deformations, i.e. for any (Σ′,F ′) continuously
connected to (Σ,F)

E(Σ,F) ≤ E(Σ′,F ′)



Background ansatz

General Type II vacua preserving 4d Poincaré invariance and 4d N = 1
supersymmetry:

metric: ds2 = e2A(y)dxµdxµ + . . .

Killing spinors: ε1(y) = ζ+ ⊗ η
(1)
+ (y) + c. c.

ε2(y) = ζ+ ⊗ η
(2)
∓ (y) + c. c. (1)

Introduce the polyforms Ψ̂1 = Ψ̂∓ and Ψ̂2 = Ψ̂± in IIA/IIB defined by Clifford
associated bispinors

η
(1)
+ ⊗ η

(2)†
± ∼

X
k=even/odd

1
k!

Ψ̂±
m1...mk γ̂

m1...mk ↔ Ψ̂± =
X

n=even,odd

Ψ̂±
(n)

The supersymmetry condition can be completely written in terms of equations for Ψ̂1

and Ψ̂2 [Graña, Minasian, Petrini & Tomasiello, hep-th/0505212].



N = 1 background supersymmetry and calibrations

We restrict to D-calibrated backgrounds, i.e. ||η(1)|| = ||η(2)|| → most general
N = 1 backgrounds admitting static supersymmetric D-branes

Explicit form of the calibrations:

ω(4d) = e4A`
e−ΦReΨ̂1 − C̃

´
space-time filling branes

ω(string) = e2A−ΦImΨ̂1 strings
ω(DW) = e3A−ΦRe(eiθΨ̂2) domain walls

They satisfy the algebraic condition for generalized calibrations.

Differential condition dHω = 0 ⇔ background Killing spinor conditions!

κ-symmetry ⇒ Supersymmetric D-branes wrap calibrated generalized cycles

For example, in the Calabi-Yau subcase the generalized calibrations are
ω(even) = Re

`
eiθe−iJ´

, ω(odd) = Re
`
eiθΩ

´
, and the calibration condition reproduces

the supersymmetry conditions found by [Mariño, Minasian, Moore & Strominger, ‘99]



Relation with Hitchin’s and Gualtieri’s generalized complex geometry
[Graña, Minasian, Petrini & Tomasiello, hep-th/0505212]

From domain wall calibrations we learn that

dH
`
e3A−ΦΨ̂2

´
= 0

⇓

Since Ψ̂2 is a pure spinor, the associated generalized complex structure J2 is
integrable ⇒ the internal manifold M is a Hitchin’s generalized Calabi-Yau

Ψ̂1 is also pure but the RR-fields provide an obstruction to the integrability of the
associated generalized almost complex structure J1.



F and D-terms from the effective action

For a space-time filling D-brane wrapping a generalized n-cycle (Σ,F) define

Wmdσ1 ∧ . . . ∧ dσn = PΣ[e3A−Φ(ιm + gmkdyk∧)Ψ̂2] ∧ eF |top ,
Ddσ1 ∧ . . . ∧ dσn = PΣ[e2A−ΦImΨ̂1] ∧ eF |top .

The D-brane (with the appropriate orientation) is supersymmetric (i.e. calibrated) iff

Wm = 0 , F− flatness ,
D = 0 , D− flatness .

The identificationWm andD as F and D-terms comes from the expansion of DBI+CS
action and susy transformations of the fermions around a susy configuration.

Furthermore, note that
F-flatness ⇔ (Σ,F) is a generalized complex submanifold

Simplest examples: Lagrangian and holomorphic cycles with F0,2 = 0 are
generalized complex submanifolds in symplectic and complex spaces respectively.



The superpotential

The superpotential is given by

W(Σ,F) =

Z
B

P[e3A−ΦΨ̂2] ∧ eF̃ + constant ,

where (B, F̃) interpolates between a fixed (Σ0,F0) and (Σ,F).

For a general deformation of (Σ,F)

δW = 0 ⇔ F-flatness conditions Wm = 0

The same expression from the tension a DW given by a D-brane filling three flat
directions and wrapping an internal generalized chain (B, F̃) interpolating between
(Σ0,F0) and (Σ,F)

TDW = 2|∆W| =

=

Z
B

P[ω(DW)] ∧ eF̃ =
˛̨ Z

B
P[e3A−ΦΨ̂2] ∧ eF̃

˛̨
.



Generalized forms on D-branes

The general infinitesimal deformation of (Σ,F) is described by a section of the
generalized normal bundle:

N(Σ,F) ≡ (TM ⊕ T?
M)|Σ/T(Σ,F) .

where T(Σ,F) is the generalized tangent bundle.

We can use J2 to split N(Σ,F) ⊗ C = N 1,0
(Σ,F) ⊕N

0,1
(Σ,F) and one can define a

differential

d(Σ,F) : Γ(ΛkN 0,1
(Σ,F)) → Γ(Λk+1N 0,1

(Σ,F))

and the associated cohomology groups

Hk(Σ,F) ≡ ker (d(Σ,F)|k)/im (d(Σ,F)|k−1)

From the DBI-action, it is possible to introduce a metric G depending on Ψ̂1 on
sections of ΛkN 0,1

(Σ,F) and thus a codifferential

d†(Σ,F) : Γ(ΛkN 0,1
(Σ,F)) → Γ(Λk−1N 0,1

(Σ,F))



Deformations of calibrated generalized cycles

Consider an infinitesimal deformation given by X0,1 ∈ Γ(N 0,1
(Σ,F)). Then

I F-flatness ((Σ,F) generalized complex):

d(Σ,F)X0,1 = 0

I Complexified D-flatness (including gauge-fixing):

d†(Σ,F)X
0,1 = 0

Thus

∆(Σ,F)X0,1 = 0 where ∆(Σ,F) ≡ d(Σ,F)d
†
(Σ,F) + d†(Σ,F)d(Σ,F).

The complexified D-flatness condition provides a gauge-fixing for the
J2-complexified world-volume gauge transformations

X0,1 → X0,1 + d(Σ,F)λ . (2)

Thus,

massless fluctuations = H1(Σ,F) (3)

Consistent with BRST cohomology of topological branes in GC spaces, which is
given by H•(Σ,F) [Kapustin & Li, hep-th/0501071].



A simple example: D3-brane on β-deformed complex manifold

Consider a complex manifold M with holomorphic (3, 0) form Ω. A β deformation is
given by β ∈ H0(Λ2T1,0

M ), with [β, β] = 0 and gives a type 1 pure spinor

e3A−ΦΨ̂2 = ιβΩ + Ω ⇒ dWD3 = ιβΩ .

Suppose to have a 0-cycle (D3-brane) at z0 ∈ M. We have that

F-flatness ⇔ ιβΩ|z0 = 0 ⇔ β|z0 = 0 .

Thus, the D3-brane must be located at a point were the type jumps to 3 (ψ|z0 = Ω).
The differential complex is given by α ∈ ΛkT1,0

M |z0 , with differential acting as follows

d{z0}α = −∂β|z0 ◦ α ≡ −
1

2(k − 1)!
∂lβ

i1i2αli3...ik+1∂i1 ∧ . . . ∧ ∂ik+1 |z0 .

One thus obtains

H1({z0}) = {X ∈ T1,0
M |z0 : ∂β|z0 ◦ X = 0} .

More directly, from the D3-brane superpotential,

∂i∂jWD3|z0 = ∂i(e3A−ΦΨ̂2)j|z0 =
1
2
(∂iβ

kl)Ωklj|z0 .



Future directions

I Global properties of the moduli space and higher order obstructions?

I How to extract the effective superpotential Weff(φ) for the massless fluctuations
from the geometrical superpotential W(Σ,F)?

I Coupling to closed string sector [Grana, Louis & Waldram ‘05; Benmachiche &
Grimm ‘06]?

I Interesting nontrivial explicit realizations?

I ...





Superpotentials from domain walls

Consider a BPS DW interpolating between two vacua (Σ1,F1) and (Σ2,F2). From
field theory arguments [Cvetic et al., ’91; Abraham & Townsend, ’91] its tension is given
by

TDW = 2|∆W| .

In the D-brane realization, this DW is given by a D-brane filling three flat directions
and wrapping an internal generalized chain (B, F̃) interpolating between (Σ1,F1)
and (Σ2,F2).

⇓

The tension is given by

TDW =

Z
B

P[ω(DW)] ∧ eF̃ =
˛̨ Z

B
P[e3A−ΦΨ̂2)] ∧ eF̃

˛̨
.

⇒ The same expression for the superpotential is recovered!



D-terms and Fayet-Iliopoulos terms

For a Dp-brane wrapping an internal generalized cycle (Σ,F), the D-term D has the
explicit form

Ddnσ = µpP[e2A−ΦImΨ̂1] ∧ eF |top .

Note that

ξ ≡ 2πα′
Z

Σ

Ddnσ

is constant under any continuous deformation of (Σ,F)

⇓

The D-flatness condition D = 0 can be satisfied only if ξ = 0.

Natural interpretation: ξ is the FI term of the lowest KK gauge field, which has no
charged chiral fields.



FI terms and cosmic strings

We can obtain a D-brane cosmic string in the following way:
I Consider a DD̄p-brane pair wrapping (Σ,F) such that ξ 6= 0.
I By Sen’s mechanism, a tachyonic vortex in the flat directions produces an

effective string given by a D(p− 2)-brane wrapping the same cycle (Σ,F) and
filling only two flat directions.

⇓

The tension of a BPS cosmic string produced in this way is given by

Tstring = µp−2

Z
Σ

ω(string) ∧ eF = 2πξ .

Identical to the field-theory result of [Dvali, Kallosh & Van Proeyen, ‘03].

Further evidence that: D-term strings ↔ D-brane strings



Some superpotentials for D-branes on SU(3)-structure backgrounds

If the internal space has SU(3) structure (i.e. η(1) = eiϕ1η and η(2) = eiϕ2η), then

Ψ̂+ = −iei(ϕ1−ϕ2)e−iJ , Ψ̂− = −ei(ϕ1+ϕ2)Ω .

I D5-brane

W =
1
2

Z
B

P[e3A−ΦΩ] ,

thus reproducing the superpotential proposed by [Witten, ‘96]

I D6-brane

W =

Z
B

˘
P[J] ∧ F̃ +

i
2

P[J ∧ J]− i
2
F̃ ∧ F̃

¯
I D7-brane

W(Σ,F) =
1
2

Z
B

P[e3A−ΦΩ] ∧ F̃ .

See e.g. [Gomis, Marchesano & Mateos ‘05; Marchesano ‘06] for examples where these
superpotentials generate flux-induced masses for the geometrical moduli.



Probing the internal space with a D3-brane

I On more general IIB backgrounds, the integrable pure spinor has the form

Ψ̂− = Ψ̂−
(1) + Ψ̂−

(3) + Ψ̂−
(5) with Ψ̂−

(5) ∼ ?6Ψ̂
−
(1) .

Thus,

Ψ̂−
(1)(y) = dWD3(y)

⇒ the D3-brane superpotential is trivial iff the internal space has SU(3)-
structure!

I On SU(3)-structure backgrounds, one can still have a nontrivial D-term:
DD3 = cos(ϕ1 − ϕ2)

D-flatness condition DD3 = 0 ⇔ the internal space is a warped Calabi-Yau of
the kind discussed by [Graña-Polchinski].



D7-brane on SU(3) vacua and flux induced moduli lifting

SU(3)-structure IIB vacua ⇒ The internal space is complex and ∃ holomorpic (3, 0)
form Ω = e3A−ΦΨ̂−.

The D7-brane superpotential is given by

W(Σ,F) = W0 +
1
2

Z
B

P[Ω] ∧ F̃ . (4)

δW(Σ,F) = 0 ⇔ Σ holomorphically embedded and F(2,0) = 0.

h(2,0)(Σ) possible massless chiral fields ti associated to the deformations of the
holomorphic cycle Σ generated by the h(2,0)(Σ) sections Xi of N hol

Σ .

We have h(2,0)(Σ) moduli lifting conditions [see also Gomis, Marchesano & Mateos,
0506179]:

∂iW =
1
2

Z
Σ

PΣ[ıXiΩ] ∧ F = 0

Furthermore, if T1,0
M |Σ = T1,0

Σ ⊕N hol
Σ holomorphically, we have the H-induced

masses

mij(t0) ≡ (∂i∂jW)(t0) =
1
2

Z
Σ0

PΣ0 [ıXiΩ ∧ ıXj H] . (5)



Holomorphicity and symplectic structure

If C is the configuration space of the generalized cycles (Σ,F), it is possible to
introduce an almost complex structure J on C such that

X ∈ T0,1
C |(Σ,F) ⇒ X(W)|(Σ,F) ≡ 0 . (6)

Then, the superpotential W is ‘holomorphic’ with respect to J.

It is also possible to introduce a formal symplectic structure Ξ on C such that the
deriving moment map m(Σ,F) generating the world-volume gauge transformations
coincides with the D-term D.

The above almost complex and symplectic structures reproduce the known ones in
the pure CY case.

Like in that case, they are not trivially integrable and do not combine in a Kähler
structure!



Generalized complex geometry [Hitchin, Gualtieri]
Algebraic level

Consider TM ⊕ T?
M instead of TM .

I Natural metric I(X + ξ,X + ξ) = ξ(X) of signature (6, 6)
⇒ Structure group SO(6, 6)

I Generalized almost complex structure

J : TM ⊕ T?
M → TM ⊕ T?

M ,

such that J 2 = −1 and J TIJ = I
⇒ Reduction of the structure group to U(3, 3).

I Λ•T? =
L

k ΛkT? is the associated spinor bundle, where the action of
X + ξ ∈ TM ⊕ T?

M as “gamma matrix” is given by

(X + ξ) · ω = (ıX + ξ∧)ω where ω ∈ Λ•T?

I A spinor ϕ ∈ Λ•T?
M is pure if it’s null space Lϕ ⊂ TM ⊕ T?

M is of maximal
dimension 6



I A globally defined pure spinor ϕ ∈ C∞(Λ•T?
M ⊗ C) such that Lϕ ∩ L̄ϕ = 0

(real index zero) defines a generalized almost complex structure J , whose +i
eigenspace is given by Lϕ (reduction of the structure group to SU(3, 3)).

I In N = 1 backgrounds, Ψ+ and Ψ− are pure spinors and their null spaces are
of real index zero and have common three dimensional subspace
⇒ structure group further reduced to SU(3)× SU(3)

⇓

Our N = 1 backgrounds have SU(3)× SU(3)-structure group on TM ⊕ T?
M

⇒ This reduced structure group defines also the metric g on M, since

G = −IJ+J− =

„
g 0
0 g−1

«
. (7)

G is a positive definite metric on TM ⊕ T?
M .



Generalized complex geometry
Differential level

I Usual integrability condition for an almost complex structure J : TM → TM ,
J2 = −1 is that its +i eigenspace is involutive:

Nij(X, Y) ' (1 + iJ)[(1− iJ)X, (1− iJ)Y]Lie = 0 (8)

I Analogous integrability condition for J : TM ⊕ T?
M → TM ⊕ T?

M ,
with [., .]Lie substituted by the (twisted) Courant bracket

[X + ξ, Y + η]Courant = [X, Y]Lie + LXη − LYξ −
1
2

d(ıXη − ıTξ) + ıY ıXH . (9)

I If a pure spinor ϕ is dH-closed (dH = d + H∧)
⇒ the associated generalized almost complex structure J is integrable

⇓

The susy condition dH(e2A−ΦΨ±) = 0 for IIA/IIB tells us that the internal
space M is a generalized complex manifold. Since Ψ± are globally defined
M is a generalized Calabi-Yau structure as defined by Hitchin.



Main subcases

I Complex case
In this case ϕ ∝ θ1 ∧ θ2 ∧ θ3 where θi, θ̄i linearly independent (ϕ ∧ ϕ̄ 6= 0).
Then

J =

„
−J 0
0 Jt

«
. (10)

The integrability condition dHϕ = 0 implies that
I J is an integrable complex structure,
I ϕ is a holomorphic (3, 0)-form (KM is trivial)
I and H(3,0) = H(0,3) = 0.

I Symplectic case
In this case ϕ ∝ eiω . In this case

J =

„
0 −ω−1

ω 0

«
. (11)

The condition dHϕ = 0 now implies that dω = 0 (symplectic) and H = 0

More generally one obtains a hybrid complex-symplectic structure which locally
admits hybrid complex-symplectic coordinates (generalized Darboux theorem
[Gualtieri]).



N = 1 vacua with SU(3) structure: η(1) = aη and η(2) = bη

I Introduce hermitian almost complex structure Jmn = −iη†+γ̂mnη+ and (3, 0)

form Ωmnp = −iη†−γ̂mnpη+. These are such that

1
3!

J ∧ J ∧ J =
i
8
Ω ∧ Ω̄ , J ∧ Ω = 0

I Then the integrable spinors are:

Ψ+ =
ab̄
8

e−iJ (IIA) , Ψ− = − iab
8

Ω (IIB) (12)

⇓

For the SU(3)-structure subcase, the internal manifold M is symplectic in type
IIA and complex in type IIB

More generally the generalized complex structure of M implies a local 2d + 4d
splitting. For example, in the static SU(2) case (η(1) ⊥ η(2)) one has

Ψ+ ∝ eiω(2d) ∧ Ω(4d) , IIA
Ψ− ∝ eiω(4d) ∧ Ω(2d) , IIB
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