Gravitational theories coupled to matter as invariant theories under Kac-Moody algebras

Nassiba Tabti

Service de Physique Mathématique des Interactions Fondamentales International Solvay Institutes

(2nd RTN workshop, Napoli)

October 13, 2006 1 / 30

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

< ロト (同下 (ヨト (ヨト))

INTRODUCTION

M-Theory

• Candidate for the unification of all fundamental interactions

• M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

< ロト (同下 (ヨト (ヨト))

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

$$S = \int d^{11}x \sqrt{-g} \left(R - \frac{1}{2.4!} F_{(4)} F^{(4)} + C.S. \right)$$

October 13, 2006

2 / 30

(2nd RTN workshop, Napoli)

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

$$S = \int d^{11}x \sqrt{-g} \left(R - \frac{1}{2.4!} F_{(4)} F^{(4)} + C.S. \right)$$

Study of hidden symmetries (= exhibited by dimensional reduction) would allow a best understanding of the structure of this unified theory

$$S = \frac{1}{8\pi G^{(D)}} \int d^D x \sqrt{-g} \left(R - \frac{1}{2} \sum_{u=1}^q \partial_M \Phi^u \partial^M \Phi^u - \sum_n \frac{1}{2n!} e^{\sum_u a_n^u \Phi^u} F_{(n)}^2 \right)$$

- gravity : $g_{\mu\nu}$
- dilatons : Φ^u
- matter fields : $F_{(n)} = dA_{(n-1)}$

Original formulation of gravitational theories coupled to matter fields and dilatons in terms of actions invariant under Kac-Moody algebras

 \longrightarrow study of hidden symmetries

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

OUTLINE

1

DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- \bullet Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras
- 2 \mathcal{G}^{+++} invariant action
 - Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
 - E_8^{+++} invariant action and link with the 11- dimensional supergravity
- **3** \mathcal{G}^{++} -invariant actions
 - \mathcal{G}_{C}^{++} and cosmological solutions
 - \mathcal{G}_B^{++} and branes solutions
- **4** Weyl transformations and their consequences
 - Signatures

5 Conclusions and perspectives

DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2) \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
 Signatures

5 Conclusions and perspectives

・ 何 ト ・ ヨ ト ・ ヨ ト …

Compactification down to 3 dimensions

$$D$$
 dimensions : $\mathcal{L} = \sqrt{-g} \left(R - \frac{1}{2} \sum_{u=1}^{q} \partial_M \Phi^u \partial^M \Phi^u - \sum_n \frac{1}{2n!} e^{\sum_u a_n^u \Phi^u} F_{(n)}^2 \right)$

Compactification on a torus T^{D-3}

$$3 \text{ dimensions} : \mathcal{L}_{3D} = \sqrt{-g} \left(R - \frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi} - \frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \, \bar{\alpha} \cdot \bar{\varphi}} \, \partial_{\mu} \chi_{\bar{\alpha}} \, \partial^{\mu} \chi_{\bar{\alpha}} \right)$$

The 3-dimensional Lagrangian contain only scalars coupled to gravity. Expected symmetry = $GL(D-3, \mathbb{R})$ BUT!

Some theories exhibit a much larger symmetry

October 13, 2006

6 / 30

(2nd RTN workshop, Napoli)

Compactification down to 3 dimensions

$$D$$
 dimensions : $\mathcal{L} = \sqrt{-g} \left(R - \frac{1}{2} \sum_{u=1}^{q} \partial_M \Phi^u \partial^M \Phi^u - \sum_n \frac{1}{2n!} e^{\sum_u a_n^u \Phi^u} F_{(n)}^2 \right)$

Compactification on a torus T^{D-3}

$$3 \text{ dimensions} : \mathcal{L}_{3D} = \sqrt{-g} \left(R - \frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi} - \frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}} \right)$$

The 3-dimensional Lagrangian contain only scalars coupled to gravity.

Expected symmetry = $GL(D-3, \mathbb{R})$ BUT!

Some theories exhibit a much larger symmetry

(2nd RTN workshop, Napoli)

October 13, 2006 6 / 30

3

(日) (四) (日) (日) (日)

Compactification down to 3 dimensions

$$D \text{ dimensions} : \mathcal{L} = \sqrt{-g} \left(R - \frac{1}{2} \sum_{u=1}^{q} \partial_M \Phi^u \partial^M \Phi^u - \sum_n \frac{1}{2n!} e^{\sum_u a_n^u \Phi^u} F_{(n)}^2 \right)$$

Compactification on a torus T^{D-3}

$$3 \text{ dimensions} : \mathcal{L}_{3D} = \sqrt{-g} \left(R - \frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi} - \frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}} \right)$$

The 3-dimensional Lagrangian contain only scalars coupled to gravity.

Expected symmetry =
$$GL(D-3, \mathbb{R})$$

BUT!

Some theories exhibit a much larger symmetry

(2nd RTN workshop, Napoli)

October 13, 2006 6 / 30

(日) (四) (日) (日) (日)

Coset Lagrangian \mathcal{G}/\mathcal{K}

$$\mathcal{L}_{3D} = \sqrt{-g} \left(R - \frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi} - \frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \, \bar{\alpha} \cdot \bar{\varphi}} \, \partial_{\mu} \chi_{\bar{\alpha}} \, \partial^{\mu} \chi_{\bar{\alpha}} \right)$$

Scalar part of \mathcal{L}_{3D} \simeq Coset Lagrangian $\mathcal{L}_{\mathcal{G}/\mathcal{K}}$ (invariant under transformations \mathcal{G}/\mathcal{K})

 $\mathcal{G} \longrightarrow \text{simple Lie group}$

 $\mathcal{K} \longrightarrow$ maximal compact subgroup of \mathcal{G}

Cremmer, Julia '79 Marcus, Schwarz '83

October 13, 2006 7 / 30

Coset Lagrangian \mathcal{G}/\mathcal{K}

$$\mathcal{L}_{3D} = \sqrt{-g} \left(R - \frac{1}{2} \,\partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi} - \frac{1}{2} \,\sum_{\bar{\alpha}} \, e^{\sqrt{2} \,\bar{\alpha} \cdot \bar{\varphi}} \,\partial_{\mu} \chi_{\bar{\alpha}} \,\partial^{\mu} \chi_{\bar{\alpha}} \right)$$

Cremmer, Julia '79 Marcus, Schwarz '83

October 13, 2006 7 / 30

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

(2nd RTN workshop, Napoli)

October 13, 2006 8 / 30

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Let us reduce the dimensions down to D = 9

2nd RTN workshop, Napoli)

October 13, 2006 8 / 30

$$\mathcal{L} = \sqrt{-g} \bigg(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \bigg)$$

Let us reduce the dimensions down to D = 8

October 13, 2006 8 / 30

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Let us reduce the dimensions down to D = 7

(2nd RTN workshop, Napoli)		Octo
----------------------------	--	------

ober 13, 2006 8 / 30

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Let us reduce the dimensions down to D = 6

October 13, 2006 8 / 30

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Let us reduce the dimensions down to D = 5

October 13, 2006 8 / 30

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Let us reduce the dimensions down to D = 4

(2nd	RTN	workshop	, Napoli)
---	-----	-----	----------	----------	---

October 13, 2006 8 / 30

э

$$\mathcal{L} = \sqrt{-g} \bigg(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \bigg)$$

Dynkin diagram of E_8

Let us reduce the dimensions down to D = 3

October 13, 2006 8 / 30

э

$$\mathcal{L} = \sqrt{-g} \left(R(g_{\mu\nu}) - \frac{1}{2.4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + C.S. \right)$$

Dynkin diagram of E_8

- Red vertices define the gravity line. It represents simple roots related to fields coming from $g_{\mu\nu}$.
- The blue vertex is related to field resulting from $F_{\mu\nu\rho\sigma}$.

< 1[™] >

A B A B A

DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2 \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
 Signatures

5 Conclusions and perspectives

・ 「「・・・ ・ 」 ・

(2nd RTN workshop, Napoli)

October 13, 2006 10 / 30

3

< ロト (同下 (ヨト (ヨト))

(日) (四) (日) (日)

Infinite dimensional Lie algebras

(2nd RTN workshop, Napoli)

October 13, 2006 10 / 30

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

All simple maximally non-compact Lie group \mathcal{G} could be generated from the reduction down to 3 dimensions of suitably chosen actions.

Cremmer, Julia, Lu, Pope '99

It was conjectured that these actions possess the very-extended Kac-Moody symmetries \mathcal{G}^{+++} .

Englert, Houart, Taormina, West '03

• Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$

• Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

All simple maximally non-compact Lie group \mathcal{G} could be generated from the reduction down to 3 dimensions of suitably chosen actions.

Cremmer, Julia, Lu, Pope '99

It was conjectured that these actions possess the very-extended Kac-Moody symmetries \mathcal{G}^{+++} .

Englert, Houart, Taormina, West '03

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

All simple maximally non-compact Lie group \mathcal{G} could be generated from the reduction down to 3 dimensions of suitably chosen actions.

Cremmer, Julia, Lu, Pope '99

It was conjectured that these actions possess the very-extended Kac-Moody symmetries \mathcal{G}^{+++} .

Englert, Houart, Taormina, West '03

(2nd RTN workshop, Napoli)

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

All simple maximally non-compact Lie group \mathcal{G} could be generated from the reduction down to 3 dimensions of suitably chosen actions.

Cremmer, Julia, Lu, Pope '99

It was conjectured that these actions possess the very-extended Kac-Moody symmetries \mathcal{G}^{+++} .

Englert, Houart, Taormina, West '03

motivates

Construction of action explicitly invariant under \mathcal{G}^{+++}

Englert, Houart '03

(2nd RTN workshop, Napoli)

October 13, 2006 12 / 30

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Englert, Houart '03

(2nd RTN workshop, Napoli)

October 13, 2006 12 / 30

3

DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2 \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
 Signatures

5 Conclusions and perspectives

・ 同 ト ・ ヨ ト ・ ヨ ト …

Construction of \mathcal{G}^{+++} - invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

$S_{\mathcal{G}^{+++}}$ is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++}/\mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++} is the subalgebra invariant under a *temporal involution* Ω_1 which ensures that the action is SO(1, D-1) invariant.

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ
Construction of \mathcal{G}^{+++} - invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

 $S_{\mathcal{G}^{+++}}$ is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++}/\mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++} is the subalgebra invariant under a *temporal involution* Ω_1 which ensures that the action is SO(1, D-1) invariant.

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

 $S_{\mathcal{G}^{+++}}$ is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++}/\mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++} is the subalgebra invariant under a *temporal involution* Ω_1 which ensures that the action is SO(1, D-1) invariant.

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

 $S_{\mathcal{G}^{+++}}$ is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++}/\mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++} is the subalgebra invariant under a *temporal involution* Ω_1 which ensures that the action is SO(1, D-1) invariant.

Parametrization of the Coset $\mathcal{G}^{+++}/\mathcal{K}^{+++}$

$$\mathcal{V}(\xi) = exp^{\mathcal{B}^a \phi_a(\xi)}$$

- \mathcal{B}^a = generators of \mathcal{G}^{+++} belonging to the Borel subalgebra (Cartan + positive root generators)
- To each \mathcal{B}^a , one associates a 'field' $\phi_a(\xi)$

▲□▶ ▲□▶ ▲回▶ ▲回▶ ▲□ ● ○○○

Example : level decomposition of E_8^{+++}

A level decomposition of E_8^{+++} is performed with respect to the sub-algebra A_{10} of its gravity line.

The level l counts the number of times the simple root α_{11} (not contained in the gravity line) appears in A_{10} irreducible representation.

Nicolai, Fischbacher '03

イロト イポト イヨト イヨト

(2nd RTN workshop, Napoli)

(2nd RTN workshop, Napoli)

(2nd RTN workshop, Napoli)

(2nd RTN workshop, Napoli)

(2nd RTN workshop, Napoli)

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$\mathcal{V}(\xi) = exp\left(\underbrace{\sum_{a \ge b} h_b^{\ a}(\xi) K_a^b}_{Level \ 0}\right) exp\left(\underbrace{\sum_{a_1 \ a_2 \ a_3}(\xi) R^{a_1 \ a_2 \ a_3} + \dots}_{Level \ \ge 1}\right)$$

Defining

$$\frac{dv(\xi)}{d\xi} = \frac{d\mathcal{V}}{d\xi}\mathcal{V}^{-1} \qquad \frac{d\tilde{v}(\xi)}{d\xi} = -\Omega_1 \frac{dv(\xi)}{d\xi} = \tilde{\mathcal{V}}^{-1} \frac{d\tilde{\mathcal{V}}}{d\xi} \qquad \mathcal{P} = \frac{1}{2} \left(\frac{dv}{d\xi} + \frac{d\tilde{v}}{d\xi}\right)$$

 Ω_1 = temporal involution allows identification of index 1 to a time coordinate

$$\mathcal{S}_{\mathcal{G}^{+++}} = \int d\xi \, \frac{1}{n(\xi)} \langle \mathcal{P} \mid \mathcal{P} \rangle.$$

(2nd RTN workshop, Napoli)

October 13, 2006 17 / 30

ъ

< ロ > < 回 > < 回 > < 回 > < 回 >

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$\mathcal{V}(\xi) = exp\left(\underbrace{\sum_{a \ge b} h_b^{\ a}(\xi) K_a^b}_{Level \ 0}\right) exp\left(\underbrace{\sum_{a_1 \ a_2 \ a_3}(\xi) R^{a_1 \ a_2 \ a_3} + \dots}_{Level \ \ge 1}\right)$$

Defining

$$\frac{dv(\xi)}{d\xi} = \frac{d\mathcal{V}}{d\xi}\mathcal{V}^{-1} \qquad \frac{d\tilde{v}(\xi)}{d\xi} = -\Omega_1 \frac{dv(\xi)}{d\xi} = \tilde{\mathcal{V}}^{-1} \frac{d\tilde{\mathcal{V}}}{d\xi} \qquad \mathcal{P} = \frac{1}{2} \left(\frac{dv}{d\xi} + \frac{d\tilde{v}}{d\xi}\right)$$

 $\Omega_1 =$ temporal involution allows identification of index 1 to a time coordinate

$$\mathcal{S}_{\mathcal{G}^{+++}} = \int d\xi \, \frac{1}{n(\xi)} \langle \mathcal{P} \mid \mathcal{P} \rangle.$$

(2nd RTN workshop, Napoli)

October 13, 2006 17 / 30

э

< ロト (同下 (ヨト (ヨト))

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$\mathcal{V}(\xi) = exp\left(\underbrace{\sum_{a \ge b} h_b^{\ a}(\xi) K_a^b}_{Level \ 0}\right) exp\left(\underbrace{\sum_{a_1 \ a_2 \ a_3}(\xi) R^{a_1 \ a_2 \ a_3} + \dots}_{Level \ \ge 1}\right)$$

Defining

$$\frac{dv(\xi)}{d\xi} = \frac{d\mathcal{V}}{d\xi}\mathcal{V}^{-1} \qquad \frac{d\tilde{v}(\xi)}{d\xi} = -\Omega_1 \frac{dv(\xi)}{d\xi} = \tilde{\mathcal{V}}^{-1} \frac{d\tilde{\mathcal{V}}}{d\xi} \qquad \mathcal{P} = \frac{1}{2} \left(\frac{dv}{d\xi} + \frac{d\tilde{v}}{d\xi}\right)$$

 Ω_1 = temporal involution allows identification of index 1 to a time coordinate

$$\mathcal{S}_{\mathcal{G}^{+++}} = \int d\xi \, \frac{1}{n(\xi)} \langle \mathcal{P} \mid \mathcal{P} \rangle.$$

(2nd RTN workshop, Napoli)

October 13, 2006 17 / 30

э

イロト イヨト イヨト イヨト

DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2 \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
 Signatures

5 Conclusions and perspectives

Action invariant under \mathcal{G}^{+++} $\mathcal{S}_{E_{\circ}^{+++}}$

11-dimensional supergravity

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ― 国 ― のへぐ

 $\begin{array}{cc} \text{Action invariant under } \mathcal{G}^{+++} & \overbrace{\mathcal{S}_{E_8^{+++}}}^? & & \\ & & & \\ \end{array} & & & 11\text{-dimensional supergravity} \end{array}$

イロト イポト イヨト イヨト

Study of \mathcal{G}^{++}

(2nd RTN workshop, Napoli)

October 13, 2006 19 / 30

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all \mathcal{G}^{+++} , 2 inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}$:

- \mathcal{G}_C^{++} • \mathcal{G}_{R}^{++}

Englert, Henneaux, Houart '04

(日) (四) (日) (日) (日)

э

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all \mathcal{G}^{+++} , 2 inequivalent invariant actions under α_{11} $\mathcal{G}^{++} \subset \mathcal{G}^{+++}$: • \mathcal{G}_C^{++} $\tilde{\alpha}_1$ $\tilde{\alpha}_2$ α_4 α_6 $\tilde{\alpha}_7$ α_8 α_9 • \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

< ロト (同下 (ヨト (ヨト))

(2nd RTN workshop, Napoli)

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all \mathcal{G}^{+++} , 2 inequivalent invariant actions under α_{11} $\mathcal{G}^{++} \subset \mathcal{G}^{+++}$: \mathcal{Q}_{α} • \mathcal{G}_C^{++} α_6 $\tilde{\alpha}_7$ α_8 α_9 • \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all \mathcal{G}^{+++} , 2 inequivalent invariant actions under α_{11} $\mathcal{G}^{++} \subset \mathcal{G}^{+++}$: X • \mathcal{G}_C^{++} α_8 α_9 • \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

October 13, 2006 20 / 30

э

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all \mathcal{G}^{+++} , 2 inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}$: • \mathcal{G}^{++}_{C} • \mathcal{G}^{++}_{B}

Construction of actions $S_{\mathcal{G}^{++}}$ from $S_{\mathcal{G}^{+++}}$ by a consistent truncation :

• truncation : one puts to zero all the fields multiplying generators involving the deleted root α_1

• solutions of EOM $S_{\mathcal{G}^{++}}$ = solutions of EOM $S_{\mathcal{G}^{+++}}$

Englert, Henneaux, Houart '04

1 DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2 \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES

• Signatures

5 Conclusions and perspectives

・ 「「・・・ ・ 」 ・

Fields belonging to $\mathcal{S}_{E_{s}^{++}}$

 $Fields \ of \ supergravity \ depending \ on \ time$

level 0	$g_{\hat{\mu}\hat{\nu}}(t) = fct(h_a^{\ b})$	\longleftrightarrow	metric
level 1	$A_{\hat{\mu}\hat{ u}\hat{ ho}}(t)$	\longleftrightarrow	3-form electric potential
level 2	$A_{\hat{\mu}_1\dots\hat{\mu}_6}(t)$	\longleftrightarrow	6-form magnetic potential (dual of the 3-form)
level 3	$A_{\hat{\mu}_1\hat{\mu}_8,\hat{ u}}(t)$	\longleftrightarrow	'dual' of the metric

Damour, Henneaux, Nicolai '02 ~

(2nd RTN workshop, Napoli)

1 DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2 \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
 Signatures

5 Conclusions and perspectives

・ 「 ト ・ ヨ ト ・ ヨ ト

\mathcal{G}_B^{++} - Invariant action : Construction

Same construction as \mathcal{G}_C^{++} but after a Weyl reflection W_{α_1} :

Weyl reflection is an automorphism of \mathcal{G}^{+++} which transform a root of \mathcal{G}^{+++} to another root.

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

Weyl reflection is an automorphism of \mathcal{G}^{+++} which transform a root of \mathcal{G}^{+++} to another root.

1) Weyl reflection W_{α_1} Exchange of the identification of the coordinates 1 and 2 :

- $1(\text{temporal}) \rightarrow 1 \text{ (spatial)}$
- $2(\text{spatial}) \rightarrow 2 \text{ (temporal)}$
- others unchanged (spatial)

Weyl reflection is an automorphism of \mathcal{G}^{+++} which transform a root of \mathcal{G}^{+++} to another root.

1) Weyl reflection W_{α_1} Exchange of the identification of the coordinates 1 and 2 :

- $1(\text{temporal}) \rightarrow 1 \text{ (spatial)}$
- $2(\text{spatial}) \rightarrow 2 \text{ (temporal)}$
- others unchanged (spatial)

2) Truncation

(2nd RTN workshop, Napoli)

Weyl reflection is an automorphism of \mathcal{G}^{+++} which transform a root of \mathcal{G}^{+++} to another root.

1) Weyl reflection W_{α_1} Exchange of the identification of the coordinates 1 and 2 :

- $1(\text{temporal}) \rightarrow 1 \text{ (spatial)}$
- $2(\text{spatial}) \rightarrow 2 \text{ (temporal)}$
- others unchanged (spatial)

2) Truncation

Weyl reflection is an automorphism of \mathcal{G}^{+++} which transform a root of \mathcal{G}^{+++} to another root.

1) Weyl reflection W_{α_1} Exchange of the identification of the coordinates 1 and 2 :

- $1(\text{temporal}) \rightarrow 1 \text{ (spatial)}$
- $2(\text{spatial}) \rightarrow 2 \text{ (temporal)}$
- others unchanged (spatial)

2) Truncation ξ is a spatial coordinate

Englert, Houart '03,' 04

Link with space-time theories

(2nd RTN workshop, Napoli)

1 DIMENSIONAL REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian \mathcal{G}/\mathcal{K}
- Beyond 3 dimensions : Kac-Moody algebras

2) \mathcal{G}^{+++} - invariant action

- Construction of \mathcal{G}^{+++} invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_8^{+++} invariant action and link with the 11- dimensional supergravity

3 \mathcal{G}^{++} -invariant actions

- \mathcal{G}_C^{++} and cosmological solutions
- \mathcal{G}_B^{++} and branes solutions

WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES

• Signatures

・ 「「・・・ ・ 」 ・

A Weyl transformation on a generator T of \mathcal{G}^{+++} can be expressed as a conjugaison by a group element U_W of \mathcal{G}^{+++} .

 $T \longrightarrow U_W T U_W^{-1}$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Why?

because of the non-commutativity of Weyl transformation with the temporal involution Ω :

$$U_W \Omega T U_W^{-1} = \Omega' U_W T U_W^{-1}$$

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

October 13, 2006 27 / 30

A Weyl transformation on a generator T of \mathcal{G}^{+++} can be expressed as a conjugaison by a group element U_W of \mathcal{G}^{+++} .

 $T \longrightarrow U_W T U_W^{-1}$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Why?

because of the non-commutativity of Weyl transformation with the temporal involution Ω :

$$U_W \Omega T U_W^{-1} = \Omega' U_W T U_W^{-1}$$

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

October 13, 2006 27 / 30

A Weyl transformation on a generator T of \mathcal{G}^{+++} can be expressed as a conjugaison by a group element U_W of \mathcal{G}^{+++} .

 $T \longrightarrow U_W T U_W^{-1}$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Why?

because of the non-commutativity of Weyl transformation with the temporal involution Ω :

$$U_W \Omega T U_W^{-1} = \Omega' U_W T U_W^{-1}$$

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

October 13, 2006 27 / 30

A Weyl transformation on a generator T of \mathcal{G}^{+++} can be expressed as a conjugaison by a group element U_W of \mathcal{G}^{+++} .

 $T \longrightarrow U_W T U_W^{-1}$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Why?

because of the non-commutativity of Weyl transformation with the temporal involution Ω :

$$U_W \mathbf{\Omega} T U_W^{-1} = \mathbf{\Omega}' U_W T U_W^{-1}$$

Englert, Henneaux, Houart '04

(2nd RTN workshop, Napoli)

October 13, 2006 27 / 30
Signatures of E_8^{+++}

Weyl reflections of gravity line

- don't change the global Lorentz signature (t, s)
- change only the identification of time

Weyl reflection $W_{\alpha_{11}}$

- change the global signature (1, 10)
- (1,10), (2,9), (5,6), (6,5), (9,2)

< ロト < 同ト < 回ト < ヨト

Keurentjes '04

LINK WITH PHYSICS :

• String interpretation of $W_{\alpha_{11}}$ = double T-duality in the direction 9 and 10 + exchange of these directions

Obers, Pioline '98 Englert, Houart, Taormina, West '03

• E_8^{++} -invariant action contain in addition to M-Theory branes solutions, the exotic branes related to M' and M* theory

Hull '98

\implies Signatures found for all \mathcal{G}^{+++}

de Buyl, Houart, Tabti '05 Keurentjes '05

< ロト < 同ト < 回ト < ヨト

LINK WITH PHYSICS :

• String interpretation of $W_{\alpha_{11}}$ = double T-duality in the direction 9 and 10 + exchange of these directions

Obers, Pioline '98 Englert, Houart, Taormina, West '03

• E_8^{++} -invariant action contain in addition to M-Theory branes solutions, the exotic branes related to M' and M* theory

Hull '98

\implies Signatures found for all \mathcal{G}^{+++}

de Buyl, Houart, Tabti '05 Keurentjes '05

< ロト < 同ト < 回ト < ヨト

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++} and \mathcal{G}^{+++} constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory ?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

(日) (四) (日) (日) (日)

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++} and \mathcal{G}^{+++} constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory ?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

3

(日) (四) (日) (日) (日)

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++} and \mathcal{G}^{+++} constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory ?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++} and \mathcal{G}^{+++} constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory ?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○