Gravitational theories coupled to matter as invariant

 theories under Kac-Moody algebrasNassiba Tabti

Service de Physique Mathématique des Interactions Fondamentales International Solvay Institutes UNIVERSITÉLIBRE DE BRUXELLES, UNIVERSITE D'EUROPE

Introduction

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all sunerstring theories and in particular limit at low energy the eleven dimensional supergravity

Introduction

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

Introduction

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

$$
S=\int d^{11} x \sqrt{-g}\left(R-\frac{1}{2.4!} F_{(4)} F^{(4)}+C . S .\right)
$$

Introduction

M-Theory

- Candidate for the unification of all fundamental interactions
- M-theory would encompass all superstring theories and in particular limit at low energy the eleven dimensional supergravity

$$
S=\int d^{11} x \sqrt{-g}\left(R-\frac{1}{2.4!} F_{(4)} F^{(4)}+C . S .\right)
$$

Study of hidden symmetries (= exhibited by dimensional reduction) would allow a best understanding of the structure of this unified theory

$$
S=\frac{1}{8 \pi G^{(D)}} \int d^{D} x \sqrt{-g}\left(R-\frac{1}{2} \sum_{u=1}^{q} \partial_{M} \Phi^{u} \partial^{M} \Phi^{u}-\sum_{n} \frac{1}{2 n!} e^{\sum_{u} a_{n}^{u} \Phi^{u}} F_{(n)}^{2}\right)
$$

- gravity : $g_{\mu \nu}$
- dilatons : Φ^{u}
- matter fields : $F_{(n)}=d A_{(n-1)}$

Original formulation of gravitational theories coupled to matter fields and dilatons in terms of actions invariant under Kac-Moody algebras
\longrightarrow study of hidden symmetries

Outline

(1) Dimensional Reduction and coset symmetries

- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) Weyl transformations and their consequences
- Signatures
(5) Conclusions And PERSPECTIVES
(1) Dimensional REDUCTION AND COSET SYMMETRIES
- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}+++}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) Weyl transformations and their consequences
- Signatures
(5) Conclusions And PERSPECTIVES

Compactification down to 3 Dimensions

D dimensions : $\mathcal{L}=\sqrt{-g}\left(R-\frac{1}{2} \sum_{u=1}^{q} \partial_{M} \Phi^{u} \partial^{M} \Phi^{u}-\sum_{n} \frac{1}{2 n!} e^{\sum_{u} a_{n}^{u} \Phi^{u}} F_{(n)}^{2}\right)$

Compactification on a torus T^{D-3}

3 dimensions : $\mathcal{L}_{3 D}=\sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi}-\frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}}\right)$
The 3-dimensional Lagrangian contain only scalars coupled to gravity.

Compactification down to 3 DIMEnsions

D dimensions : $\mathcal{L}=\sqrt{-g}\left(R-\frac{1}{2} \sum_{u=1}^{q} \partial_{M} \Phi^{u} \partial^{M} \Phi^{u}-\sum_{n} \frac{1}{2 n!} e^{\sum_{u} a_{n}^{u} \Phi^{u}} F_{(n)}^{2}\right)$

Compactification on a torus T^{D-3}

3 dimensions : $\mathcal{L}_{3 D}=\sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi}-\frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}}\right)$
The 3-dimensional Lagrangian contain only scalars coupled to gravity.

$$
\text { Expected symmetry }=G L(D-3, \mathbb{R})
$$

Compactification down to 3 Dimensions

D dimensions : $\mathcal{L}=\sqrt{-g}\left(R-\frac{1}{2} \sum_{u=1}^{q} \partial_{M} \Phi^{u} \partial^{M} \Phi^{u}-\sum_{n} \frac{1}{2 n!} e^{\sum_{u} a_{n}^{u} \Phi^{u}} F_{(n)}^{2}\right)$

Compactification on a torus T^{D-3}

3 dimensions : $\mathcal{L}_{3 D}=\sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi}-\frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}}\right)$
The 3-dimensional Lagrangian contain only scalars coupled to gravity.

$$
\begin{gathered}
\text { Expected symmetry }=G L(D-3, \mathbb{R}) \\
\text { BUT! }
\end{gathered}
$$

Some theories exhibit a much larger symmetry

Coset Lagrangian $\mathcal{G} / \mathcal{K}$

$$
\mathcal{L}_{3 D}=\sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi}-\frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}}\right)
$$

Scalar part of $\mathcal{L}_{3 D}$
$\simeq \quad$ Coset Lagrangian $\mathcal{L}_{\mathcal{G} / \mathcal{K}}$ (invariant under transformations $\mathcal{G} / \mathcal{K}$)
$\mathcal{G} \longrightarrow$ simple Lie group
$\mathcal{K} \longrightarrow$ maximal compact subgroup of \mathcal{G}

Cremmer, Julia '79
Marcus, Schwarz '83

Coset Lagrangian $\mathcal{G} / \mathcal{K}$

$$
\mathcal{L}_{3 D}=\sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \bar{\varphi} \cdot \partial^{\mu} \bar{\varphi}-\frac{1}{2} \sum_{\bar{\alpha}} e^{\sqrt{2} \bar{\alpha} \cdot \bar{\varphi}} \partial_{\mu} \chi_{\bar{\alpha}} \partial^{\mu} \chi_{\bar{\alpha}}\right)
$$

Cremmer, Julia '79
Marcus, Schwarz '83

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=9$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=8$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=7$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=6$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=5$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Let us reduce the dimensions down to $D=4$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Dynkin diagram of E_{8}

Let us reduce the dimensions down to $D=3$

Example : 11-DIMENSIONAL SUPERGRAVITY

$$
\mathcal{L}=\sqrt{-g}\left(R\left(g_{\mu \nu}\right)-\frac{1}{2.4!} F_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma}+\text { C.S. }\right)
$$

Dynkin diagram of E_{8}

- Red vertices define the gravity line. It represents simple roots related to fields coming from $g_{\mu \nu}$.
- The blue vertex is related to field resulting from $F_{\mu \nu \rho \sigma}$.
(1) Dimensional REDUCTION AND COSET SYMMETRIES
- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions

4 WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES

- Signatures
(5) Conclusions and Perspectives

Beyond 3 dimensions : Kac-Moody algebras

Beyond 3 dimensions : Kac-Moody algebras

- It has been showed that the reduced theory to 2 dimensions is connected to an infinite dimensional symmetry \mathcal{G}^{+}(affine extension of \mathcal{G}).

Nicolai ${ }^{\prime} 87$

- $D=1 \Longrightarrow \mathcal{G}^{++}$(Overextension of \mathcal{G}).
- $D=0 \Longrightarrow \mathcal{G}^{+++}$(Very-extension of $\left.\mathcal{G}\right)$.

Englert, Houart, Taormina, West'03

Beyond 3 dimensions : Kac-Moody algebras

- It has been showed that the reduced theory to 2 dimensions is connected to an infinite dimensional symmetry \mathcal{G}^{+}(affine extension of \mathcal{G}).
- $D=1 \Longrightarrow \mathcal{G}^{++}($Overextension of $\mathcal{G})$.

> Julia '82

- $D=0 \Longrightarrow \mathcal{G}^{+++}$(Very-extension of \mathcal{G}).

Englert, Houart, Taormina, West'03

Beyond 3 dimensions : Kac-Moody algebras

E_{8}^{+++}

- It has been showed that the reduced theory to 2 dimensions is connected to an infinite dimensional symmetry \mathcal{G}^{+}(affine extension of \mathcal{G}).
- $D=1 \Longrightarrow \mathcal{G}^{++}($Overextension of $\mathcal{G})$.

$$
\text { Julia ' } 82
$$

- $D=0 \Longrightarrow \mathcal{G}^{+++}($Very-extension of $\mathcal{G})$.

West '01
Lambert, West '01
Englert, Houart, Taormina, West'03

Beyond 3 dimensions : Kac-Moody algebras

E_{8}^{+++}

- It has been showed that the reduced theory to 2 dimensions is connected to an infinite dimensional symmetry \mathcal{G}^{+}(affine extension of \mathcal{G}).
- $D=1 \Longrightarrow \mathcal{G}^{++}($Overextension of $\mathcal{G})$.

Julia ' 82

- $D=0 \Longrightarrow \mathcal{G}^{+++}($Very-extension of $\mathcal{G})$.

West '01
Lambert, West '01
Englert, Houart, Taormina, West '03

$$
\mathcal{G}^{+}, \mathcal{G}^{++} \text {and } \mathcal{G}^{+++} \text {are Kac-Moody algebras }
$$

Infinite dimensional Lie algebras

Other examples

Pure gravity in D dimensions \rightarrow

- Fffective action of closed bosonic string in 26 dimensions $\rightarrow D_{21}$

Other examples

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions -

OTHER EXAMPLES

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

OTHER EXAMPLES

- Pure gravity in D dimensions $\rightarrow A_{D-3}^{+++}$
- Effective action of closed bosonic string in 26 dimensions $\rightarrow D_{24}^{+++}$

All simple maximally non-compact Lie group \mathcal{G} could be generated from the reduction down to 3 dimensions of suitably chosen actions.

Cremmer, Julia, Lu, Pope '99
It was conjectured that these actions possess the very-extended Kac-Moody symmetries \mathcal{G}^{+++}.

Englert, Houart, Taormina, West '03

Possible existence of this Kac-Moody symmetry

Construction of action explicitly invariant under \mathcal{G}^{+}

Englert, Houart '03

Possible existence of this Kac-Moody symmetry

motivates

Construction of action explicitly invariant under \mathcal{G}^{+++}

Englert, Houart '03
(1) Dimensional REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$ - Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(9) Weyl transformations and their consequences
- Signatures
(5) Conclusions and perspectives

Construction of \mathcal{G}^{+++}- Invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

$\mathcal{S}_{\mathcal{G}^{+++}}$is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a $\operatorname{coset} \mathcal{G}^{+++} / \mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++}is the subalgebra invariant under a temporal involution Ω_{1} which ensures that the action is $S O(1, D-1)$ invariant.

Construction of \mathcal{G}^{+++}- Invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

$\mathcal{S}_{\mathcal{G}^{+++}}$is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++} / \mathcal{K}^{+++}$.

- ξ is a world-line parameter. which ensures that the action is $S O(1, D-1)$ invariant.

Construction of \mathcal{G}^{+++}- Invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

$\mathcal{S}_{\mathcal{G}^{+++}}$is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++} / \mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++}is the subalgebra invariant under a temporal involution Ω_{1} which ensures that the action is $S O(1, D-1)$ invariant.

Construction of \mathcal{G}^{+++}- Invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$

$\mathcal{S}_{\mathcal{G}^{+++}}$is defined in terms of an infinity of fields $\phi(\xi)$ belonging to a coset $\mathcal{G}^{+++} / \mathcal{K}^{+++}$.

- ξ is a world-line parameter.
- \mathcal{K}^{+++}is the subalgebra invariant under a temporal involution Ω_{1} which ensures that the action is $S O(1, D-1)$ invariant.

Parametrization of the Coset $\mathcal{G}^{+++} / \mathcal{K}^{+++}$

$$
\mathcal{V}(\xi)=\exp ^{\mathcal{B}^{a} \phi_{a}(\xi)}
$$

- $\mathcal{B}^{a}=$ generators of \mathcal{G}^{+++}belonging to the Borel subalgebra (Cartan + positive root generators)
- To each \mathcal{B}^{a}, one associates a 'field' $\phi_{a}(\xi)$

EXAMPLE : LEVEL DECOMPOSITION OF E_{8}^{+++}

A level decomposition of E_{8}^{+++}is performed with respect to the sub-algebra A_{10} of its gravity line.

The level l counts the number of times the simple root α_{11} (not contained in the gravity line) appears in A_{10} irreducible representation.

Nicolai, Fischbacher '03

LEVEL DECOMPOSITION OF E_{8}^{+++}

Level l Generators Fields
$0 \quad K_{b}^{a} \rightarrow G L(11) \quad h_{a}{ }^{b}(\xi)$

LEVEL DECOMPOSITION OF E_{8}^{+++}

Level l Generators Fields

LEVEL DECOMPOSITION OF E_{8}^{+++}

Level l Generators Fields

0	$K^{a}{ }_{b} \rightarrow G L(11)$	$h_{a}^{b}(\xi)$
1	$R^{a_{1} a_{2} a_{3}}$	$A_{a_{1} a_{2} a_{3}}(\xi)$
2	$R^{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}$	$A_{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}(\xi)$

LEVEL DECOMPOSITION OF E_{8}^{+++}

Level l Generators Fields

0	$K^{a}{ }_{b} \rightarrow G L(11)$	$h_{a}{ }^{b}(\xi)$
1	$R^{a_{1} a_{2} a_{3}}$	$A_{a_{1} a_{2} a_{3}}(\xi)$
2	$R^{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}$	$A_{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}(\xi)$
3	$R^{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, b}$	$A_{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, b}(\xi)$

LEVEL DECOMPOSITION OF E_{8}^{+++}

Level l Generators Fields

0	$K^{a}{ }_{b} \rightarrow G L(11)$	$h_{a}{ }^{b}(\xi)$
1	$R^{a_{1} a_{2} a_{3}}$	$A_{a_{1} a_{2} a_{3}}(\xi)$
2	$R^{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}$	$A_{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}(\xi)$
3	$R^{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, b}$	$A_{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, b}(\xi)$

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$
\mathcal{V}(\xi)=\exp (\underbrace{\sum_{a \geq b} h_{b}^{a}(\xi) K_{a}^{b}}_{\text {Level } 0}) \exp (\underbrace{\sum A_{a_{1} a_{2} a_{3}}(\xi) R^{a_{1} a_{2} a_{3}}+\ldots}_{\text {Level } \geq 1})
$$

Defining

$=$ temporal involution allows identification of index 1 to a time

coordinate

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$
\mathcal{V}(\xi)=\exp (\underbrace{\sum_{a \geq b} h_{b}^{a}(\xi) K_{a}^{b}}_{\text {Level } 0}) \exp (\underbrace{\sum A_{a_{1} a_{2} a_{3}}(\xi) R^{a_{1} a_{2} a_{3}}+\ldots}_{\text {Level } \geq 1})
$$

Defining

$$
\frac{d v(\xi)}{d \xi}=\frac{d \mathcal{V}}{d \xi} \mathcal{V}^{-1} \quad \frac{d \tilde{v}(\xi)}{d \xi}=-\Omega_{1} \frac{d v(\xi)}{d \xi}=\tilde{\mathcal{V}}^{-1} \frac{d \tilde{\mathcal{V}}}{d \xi} \quad \mathcal{P}=\frac{1}{2}\left(\frac{d v}{d \xi}+\frac{d \tilde{v}}{d \xi}\right)
$$

$\Omega_{1}=$ temporal involution allows identification of index 1 to a time coordinate

Construction of $\mathcal{S}_{\mathcal{G}^{+++}}$

$$
\mathcal{V}(\xi)=\exp (\underbrace{\sum_{a \geq b} h_{b}^{a}(\xi) K_{a}^{b}}_{\text {Level } 0}) \exp (\underbrace{\sum A_{a_{1} a_{2} a_{3}}(\xi) R^{a_{1} a_{2} a_{3}}+\ldots}_{\text {Level } \geq 1})
$$

Defining

$$
\frac{d v(\xi)}{d \xi}=\frac{d \mathcal{V}}{d \xi} \mathcal{V}^{-1} \quad \frac{d \tilde{v}(\xi)}{d \xi}=-\Omega_{1} \frac{d v(\xi)}{d \xi}=\tilde{\mathcal{V}}^{-1} \frac{d \tilde{\mathcal{V}}}{d \xi} \quad \mathcal{P}=\frac{1}{2}\left(\frac{d v}{d \xi}+\frac{d \tilde{v}}{d \xi}\right)
$$

$\Omega_{1}=$ temporal involution allows identification of index 1 to a time coordinate

$$
\mathcal{S}_{\mathcal{G}^{+++}}=\int d \xi \frac{1}{n(\xi)}\langle\mathcal{P} \mid \mathcal{P}\rangle
$$

(1) Dimensional Reduction and coset symmetries

- Compactification down to 3 dimensions and coset Lagrangian G / K - Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}^{+++}}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) Weyl transformations and their consequences
- Signatures
(3) Conclusions and perspectives

E_{8}^{+++}- INVARIANT ACTION AND LINK WITH THE 11-

 DIMENSIONAL SUPERGRAVITYAction invariant under \mathcal{G}^{+++}

$$
\mathcal{S}_{E_{8}^{+++}}
$$

11-dimensional supergravity

E_{8}^{+++}- INVARIANT ACTION AND LINK WITH THE 11-

 DIMENSIONAL SUPERGRAVITYAction invariant under \mathcal{G}^{+++} $\mathcal{S}_{E_{8}^{++}}$
$\longleftrightarrow \leadsto$ 11-dimensional supergravity

E_{8}^{+++}- INVARIANT ACTION AND LINK WITH THE 11-

 DIMENSIONAL SUPERGRAVITYAction invariant under \mathcal{G}^{+++} $\mathcal{S}_{E_{8}^{+++}}$
$\leftrightarrow \leadsto$ 11-dimensional supergravity
\star How to interpret the parameter ξ ?
\star How to interpret the 'fields' $\phi(\xi)$?

E_{8}^{+++}- INVARIANT ACTION AND LINK WITH THE 11-

 DIMENSIONAL SUPERGRAVITYAction invariant under \mathcal{G}^{+++} $\mathcal{S}_{E_{8}^{+++}}$
«~ 11-dimensional supergravity
\star How to interpret the parameter ξ ?
\star How to interpret the 'fields' $\phi(\xi)$?

$$
\text { Study of } \mathcal{G}^{++}
$$

\mathcal{G}^{++}-INVARIANT ACTIONS

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all $\mathcal{G}^{+++}, 2$
inequivalent invariant actions under
$\mathcal{G}^{++} \subset \mathcal{G}^{+++}:$

- \mathcal{G}_{C}^{++}
- \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

\mathcal{G}^{++}-INVARIANT ACTIONS

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all $\mathcal{G}^{+++}, 2$ inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}:$

- \mathcal{G}_{C}^{++}

- \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

\mathcal{G}^{++}-INVARIANT ACTIONS

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all $\mathcal{G}^{+++}, 2$ inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}:$

- \mathcal{G}_{C}^{++}

- \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

\mathcal{G}^{++}-INVARIANT ACTIONS

The formulation of space-time theories as invariant theories under Kac-Moody algebras, includes for all $\mathcal{G}^{+++}, 2$ inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}:$

- \mathcal{G}_{C}^{++}

- \mathcal{G}_{B}^{++}

Englert, Henneaux, Houart '04

\mathcal{G}^{++}-INVARIANT ACTIONS

The formulation of space-time theories as
invariant theories under Kac-Moody algebras, includes for all $\mathcal{G}^{+++}, 2$ inequivalent invariant actions under $\mathcal{G}^{++} \subset \mathcal{G}^{+++}:$

- \mathcal{G}_{C}^{++}

- \mathcal{G}_{B}^{++}

Construction of actions $\mathcal{S}_{\mathcal{G}^{++}}$from $\mathcal{S}_{\mathcal{G}^{+++}}$by a consistent truncation :

- truncation : one puts to zero all the fields multiplying generators involving the deleted root α_{1}
- solutions of EOM $\mathcal{S}_{\mathcal{G}^{++}}=$solutions of EOM $\mathcal{S}_{\mathcal{G}^{+++}}$

Englert, Henneaux, Houart '04
(1) Dimensional REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}+++}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
- Signatures
(5) Conclusions And PERSPECTIVES
\qquad

\mathcal{G}_{C}^{++}INVARIANT ACTION

Cosmological solutions in the vicinity of space-like singularity

> Link with space-time theories

The restriction of $\mathcal{S}_{\mathcal{G}_{C}^{+}}$to a definite number of lowest levels is equal to the corresponding space-time theory in which the fields depend only on the time coordinate

and euclidiean signature in $D-1$ dimensions $(\hat{\mu}=2, \ldots, D)$

Fields belonging to $\mathcal{S}_{E_{8}^{++}}$
Fields of supergravity depending on time

level 0	$g_{\hat{\mu} \hat{\nu}}(t)=f c t\left(h_{a}{ }^{b}\right)$		metric
level 1	$A_{\hat{\mu} \hat{\nu} \hat{\rho}}(t)$		3-form electric potential
level 2	$A_{\hat{\mu}_{1} \ldots \hat{\mu}_{6}}(t)$		6-form magnetic potential (dual of the 3-form)
level 3	$A_{\hat{\mu}_{1} \ldots \hat{\mu}_{8}, \hat{\nu}}(t)$	'dual' of the metric	

Damour, Henneaux, Nicolai '02
(1) Dimensional REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}+++}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) Weyl transformations and their consequences
- Signatures
(3) Conclusions and perspectives
\qquad

\mathcal{G}_{B}^{++}INVARIANT ACTION : CONSTRUCTION

Same construction as \mathcal{G}_{C}^{++}but after a Weyl reflection $W_{\alpha_{1}}$:
Weyl reflection is an automorphism of \mathcal{G}^{+++}which transform a root of \mathcal{G}^{+++}to another root.

\mathcal{G}_{B}^{++}INVARIANT ACTION : CONSTRUCTION

Same construction as \mathcal{G}_{C}^{++}but after a Weyl reflection $W_{\alpha_{1}}$:
Weyl reflection is an automorphism of \mathcal{G}^{+++}which transform a root of \mathcal{G}^{+++}to another root.

1) Weyl reflection $W_{\alpha_{1}}$

Exchange of the identification of the coordinates 1 and 2 :

- 1(temporal) $\rightarrow 1$ (spatial)
- 2(spatial) $\rightarrow 2$ (temporal)
- others unchanged (spatial)

\mathcal{G}_{B}^{++}INVARIANT ACTION : CONSTRUCTION

Same construction as \mathcal{G}_{C}^{++}but after a Weyl reflection $W_{\alpha_{1}}$:
Weyl reflection is an automorphism of \mathcal{G}^{+++}which transform a root of \mathcal{G}^{+++}to another root.

1) Weyl reflection $W_{\alpha_{1}}$

Exchange of the identification of the coordinates 1 and 2 :

- 1(temporal) $\rightarrow 1$ (spatial)
- 2(spatial) $\rightarrow 2$ (temporal)
- others unchanged (spatial)

2) Truncation

\mathcal{G}_{B}^{++}INVARIANT ACTION : CONSTRUCTION

Same construction as \mathcal{G}_{C}^{++}but after a Weyl reflection $W_{\alpha_{1}}$:
Weyl reflection is an automorphism of \mathcal{G}^{+++}which transform a root of \mathcal{G}^{+++}to another root.

1) Weyl reflection $W_{\alpha_{1}}$

Exchange of the identification of the coordinates 1 and 2 :

- 1(temporal) $\rightarrow 1$ (spatial)
- 2(spatial) $\rightarrow 2$ (temporal)
- others unchanged (spatial)

2) Truncation

\mathcal{G}_{B}^{++}INVARIANT ACTION : CONSTRUCTION

Same construction as \mathcal{G}_{C}^{++}but after a Weyl reflection $W_{\alpha_{1}}$:
Weyl reflection is an automorphism of \mathcal{G}^{+++}which transform a root of \mathcal{G}^{+++}to another root.

1) Weyl reflection $W_{\alpha_{1}}$

Exchange of the identification of the coordinates 1 and 2 :

- 1(temporal) $\rightarrow 1$ (spatial)
- 2(spatial) $\rightarrow 2$ (temporal)
- others unchanged (spatial)

2) Truncation
ξ is a spatial coordinate

$\mathcal{G}_{B}^{++}-$INVARIANT ACTION

Englert, Houart '03,' 04

Link with space-time theories

Solutions are identical to the ones of covariant Einstein and fields equations describing intersecting extremal branes smeared in all dimensions but one

and Lorentz signature in $D-1$ dimensions ($\hat{\mu}=2, \ldots, D)$

$$
\text { Fields belonging to } \mathcal{S}_{E_{8}^{++}} \quad \text { Branes of } M \text {-theory }
$$

level 0	$g_{\hat{\mu} \hat{\nu}}(x)$	\longleftrightarrow	$K K$-wave (0-brane)
level 1	$A_{\hat{\mu} \hat{\nu} \hat{\rho}}(x)+g_{\hat{\mu} \hat{\nu}}(x)$	\longleftrightarrow	$M 2(2$-brane)
level 2	$A_{\hat{\mu}_{1} \ldots \hat{\mu}_{6}}(x)+g_{\hat{\mu} \hat{\nu}}(x)$	\longleftrightarrow	$M 5(5$-brane)
level 3	$A_{\hat{\mu}_{1} \ldots \hat{\mu}_{8}, \hat{\nu}}(x)+g_{\hat{\mu} \hat{\nu}}(x)$	\longleftrightarrow	$K K 6$-monopole

\star Intersection rules neatly encoded in $\mathcal{G}_{B}^{++} \Longrightarrow$ orthogonality condition
(1) Dimensional REDUCTION AND COSET SYMMETRIES

- Compactification down to 3 dimensions and coset Lagrangian $\mathcal{G} / \mathcal{K}$
- Beyond 3 dimensions : Kac-Moody algebras
(2) \mathcal{G}^{+++}- INVARIANT ACTION
- Construction of \mathcal{G}^{+++}- invariant action : $\mathcal{S}_{\mathcal{G}+++}$
- E_{8}^{+++}- invariant action and link with the 11- dimensional supergravity
(3) \mathcal{G}^{++}-INVARIANT ACTIONS
- \mathcal{G}_{C}^{++}and cosmological solutions
- \mathcal{G}_{B}^{++}and branes solutions
(4) WEYL TRANSFORMATIONS AND THEIR CONSEQUENCES
- Signatures
(5) Conclusions And Perspectives

Non-Commutativity of the temporal involution with Weyl Reflection

A Weyl transformation on a generator T of \mathcal{G}^{+++}can be expressed as a conjugaison by a group element U_{W} of \mathcal{G}^{+++}.

$$
T \longrightarrow U_{W} T U_{W}^{-1}
$$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Englert, Henneaux, Houart '04

Non-Commutativity of the temporal involution with Weyl Reflection

A Weyl transformation on a generator T of \mathcal{G}^{+++}can be expressed as a conjugaison by a group element U_{W} of \mathcal{G}^{+++}.

$$
T \longrightarrow U_{W} T U_{W}^{-1}
$$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.

Non-Commutativity of the temporal involution with Weyl Reflection

A Weyl transformation on a generator T of \mathcal{G}^{+++}can be expressed as a conjugaison by a group element U_{W} of \mathcal{G}^{+++}.

$$
T \longrightarrow U_{W} T U_{W}^{-1}
$$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.
Why?

Non-Commutativity of the temporal involution with Weyl Reflection

A Weyl transformation on a generator T of \mathcal{G}^{+++}can be expressed as a conjugaison by a group element U_{W} of \mathcal{G}^{+++}.

$$
T \longrightarrow U_{W} T U_{W}^{-1}
$$

Different Lorentz signatures (t, s) can be obtained by Weyl transformations.
Why?
because of the non-commutativity of Weyl transformation with the temporal involution Ω :

$$
U_{W} \Omega T U_{W}^{-1}=\Omega^{\prime} U_{W} T U_{W}^{-1}
$$

Englert, Henneaux, Houart '04

Signatures of E_{8}^{+++}

- don't change the global Lorentz signature (t, s)
- change only the identification of time

Weyl reflections of gravity line

Weyl reflection $W_{\alpha_{11}}$

- change the global signature $(1,10)$
- $(1,10),(2,9),(5,6),(6,5)$, $(9,2)$

Link with Physics :

- String interpretation of $W_{\alpha_{11}}=$ double T-duality in the direction 9 and $10+$ exchange of these directions

Obers, Pioline '98
Englert, Houart, Taormina, West '03

- E_{8}^{++}-invariant action contain in addition to M-Theory branes solutions, the exotic branes related to M^{\prime} and M^{*} theory

de Buyl, Houart, Tabti '05

Link with Physics :

- String interpretation of $W_{\alpha_{11}}=$ double T-duality in the direction 9 and $10+$ exchange of these directions

Obers, Pioline '98
Englert, Houart, Taormina, West '03

- E_{8}^{++}-invariant action contain in addition to M-Theory branes solutions, the exotic branes related to M^{\prime} and M^{*} theory

\Longrightarrow Signatures found for all \mathcal{G}^{+++}

de Buyl, Houart, Tabti '05

Keurentjes '05

Conclusion and perspectives

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++}and \mathcal{G}^{+++}constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

Conclusion and perspectives

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++}and \mathcal{G}^{+++}constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress

Conclusion and perspectives

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++}and \mathcal{G}^{+++}constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory?
answer to this question.
Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress

Conclusion and perspectives

- Lot of properties of space-time theories neatly encoded in Kac-Moody algebras (branes, intersection rules, T-duality, ...)
- Study of \mathcal{G}^{++}and \mathcal{G}^{+++}constitute an interesting approach to understand gravitational theories coupled to matter which is conceptually different from the Einstein approach
- Fundamental question : are these symmetries only a consequence of the compactification process or are there effectively symmetries of the uncompactified theory?
- Signifiance of the infinite tower of fields is important to give an answer to this question.

Englert, Houart, Kleinschmidt, Nicolai, Tabti 'work in progress'

