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1. Motivations and overview

The main objectives of this project are to provide an exhaustive map of the 
supersymmetric AdS landscape of M-theory, and to construct explicit new 
solutions.  We extract from the Killing spinor equation of d=11 supergravity, all 
the general local geometrical properties of various classes of AdS spacetimes, of 
different dimensionalities and preserving various amounts of supersymmetry, 
that it encodes.  We then use this information to construct explicit new 
examples.

In keeping with the general philosophy of AdS/CFT, one would expect that all 
AdS spacetimes in M-theory could be obtained as a decoupling limit of some 
brane configuration. Therefore we first focus on deriving all the properties of 
branes wrapping calibrated cycles in special holonomy manifolds that are 
implied by the Killing spinor equation. We then take the AdS limits of these 
wrapped brane spacetimes, and their supersymmetry conditions, to obtain the 
AdS supersymmetry conditions. 

In one case, we have been able to use the supersymmetry conditions so derived 
to construct eight new doubly countably infinite families of AdS_3 solutions of 
M-theory and type IIB.
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1. Motivations and overview

In more detail, our procedure to derive first the wrapped brane, and then the 
AdS supersymmetry conditions, is as follows.

• First we consider probe branes wrapping supersymmetric cycles in a 
background which is the product of flat space with a special holonomy 
manifold. We deduce the Killing spinors these configurations preserve, and the 
associated algebraic structures. We demand that the Killing spinors of the 
supergravity description define the same algebraic structures, after backreaction 
has been turned on.  We also require that as for the probe brane Killing 
spinors, they are simultaneous eigenspinors of five independent projection 
operators.This gives the fermionic part of our Killing spinor ansatz for the 
wrapped brane configurations.

• For the bosonic part, we assume that the metric contains a warped Minkowski 
factor of the appropriate dimensionality (representing the unwrapped brane 
worldvolume directions), that the Minkowski isometries are isometries of the 
full metric, and that the flux respects the Minkowski symmetries. Then 
supersymmetry implies that the metric takes the form

 

In hep-th/0605146, we also assumed (for the cases with wrapped three-cycles) 
that the electric flux vanished.

ds
2 = L

−1
ds

2( 1,p) + ds
2(M10−p−q) + C

2
ds

2( q). (1)
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1. Motivations and overview

• To take the AdS limit, we observe that written in Poincare coordinates, every 
AdS spacetime may be viewed as a special case of a Minkowski spacetime in one 
dimension lower. Thus we demand that                , and we must out pick the 
AdS radial direction from the transverse space to the Minkowski factor. 
Generically it will lie partly in the deformed special holonomy manifold and 
partly in the overall transverse space, so we may write

The AdS metric is then given by

We demand that the AdS isometries are isometries of the full metric, and that 
the flux has no components along the AdS radial direction. Inserting this limit 
into the brane supersymmetry conditions, we derive the AdS supersymmetry 
conditions.
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2
ds

2( q). (1)
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2mr (2)

1
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1
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L = λe2mr (2)
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1
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1. Motivations and overview

There are many possibilities for supersymmetric cycles on which we can wrap 
fivebranes.  Arranged according to the dimensionality of the unwrapped 
Minkowski worldvolume directions/ AdS limits, these are as follows.

Cycle G N

Kähler-2 SU(3) 1

Kähler-2 SU(2) 2

ds2 = L−1ds2( 1,p) + ds2(M10−p−q) + C2ds2( q). (1)

L = λe2mr (2)

λ−1/2dr = cos θû + sin θv̂,

(3)

û ∈ M10−p−q, v̂ ∈ q. (4)

ds2 = λ−1[e−2mrds2( 1,p) + dr2] + ds2(N9−p). (5)

1,3, AdS5 (6)

1

Cycle G N

Associative G_2 1

SLAG-3 SU(3) 2

ds2 = L−1ds2( 1,p) + ds2(M10−p−q) + C2ds2( q). (1)

L = λe2mr (2)

λ−1/2dr = cos θû + sin θv̂,

(3)

û ∈ M10−p−q, v̂ ∈ q. (4)

ds2 = λ−1[e−2mrds2( 1,p) + dr2] + ds2(N9−p). (5)

1,2, AdS4 (6)

1

In these cases, one could also include space-filling membranes.
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1. Motivations and overview

In all cases where the special holonomy manifold is eight dimensional, we can 
include membranes intersecting the fivebranes in a string, and extended in the 
overall transverse direction. 

Cycle G N

Cayley Spin(7) (1,0)

Kähler-4 SU(4) (2,0)

SLAG-4 SU(4) (1,1)

Quaternionic Kähler Sp(2) (3,0)

Complex Lagrangian Sp(2) (2,1)

Kähler-4 SU(2)xSU(2) (4,0)

Kähler-2 x Kähler-2 SU(2)xSU(2) (2,2)

Co-associative G_2 (2,0)

Kähler-4 SU(3) (4,0)

ds2 = L−1ds2( 1,p) + ds2(M10−p−q) + C2ds2( q). (1)

L = λe2mr (2)

λ−1/2dr = cos θû + sin θv̂,

(3)

û ∈ M10−p−q, v̂ ∈ q. (4)

ds2 = λ−1[e−2mrds2( 1,p) + dr2] + ds2(N9−p). (5)

1,1, AdS3 (6)

1
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1. Motivations and overview

In these cases, we can also include membranes wrapping Kähler two-cycles. 

Cycle G N

SLAG-5 SU(5) 2

Kähler-2 x SLAG-3 SU(2)xSU(3) 4

ds2 = L−1ds2( 1,p) + ds2(M10−p−q) + C2ds2( q). (1)

L = λe2mr (2)

λ−1/2dr = cos θû + sin θv̂,

(3)

û ∈ M10−p−q, v̂ ∈ q. (4)

ds2 = λ−1[e−2mrds2( 1,p) + dr2] + ds2(N9−p). (5)

, AdS2 (6)

1
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II. Supersymmetry conditions for wrapped 
branes

As a specific example to illustrate the derivation of the brane supersymmetry 
conditions, consider probe M5s wrapping a co-associative four cycle in                 .  
We introduce a frame

where       span the unwrapped worldvolume directions, and the overall transverse 
directions are       . In the abscence of the probe brane, the spacetime admits four 
Killing spinors, given by the projections 

The probe brane breaks half of these supersymmetries; we may choose the brane 
projection to be

The probe brane configuration thus admits two Killing spinors, which together 
define a                        structure in eleven dimensions. From the spinor bilinears, 
we can construct the G_2 invariant forms             We demand the existence of 
the same algebraic structure in the supergravity description of the system.
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1

ds2 = L−1ds2( 1,p) + ds2(M10−p−q) + C2ds2( q). (1)

L = λe2mr (2)

λ−1/2dr = cos θû + sin θv̂,
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II. Supersymmetry conditions for wrapped branes 

Once we turn on backreaction,           is deformed away from G_2 holonomy, 
but still admits a G_2 structure. The deviation from special holonomy is 
encoded by the intrinsic torsion. Supersymmetry implies that the metric is given 
by

The supersymmetry conditions take the form of algebraic constraints on the 
intrinsic torsion, and algebraic relationships between the torsion and the flux. 
The conditions on the intrinsic torsion may be expressed as

Given a solution of these conditions, the flux is completely determined by the 
torsion, according to

where 
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II. Supersymmetry conditions for wrapped branes

For all the other cases, the torsion conditions are qualitatively similar. Given our 
assumptions, the flux for M5s wrapping cycles in manifolds of dimension d<8 is 
given by

with Vol[M5] the wedge product of the volume form on the warped Minkowski 
space with the calibration form of the cycle. For M5s wrapping four-cycles in 
eight-manifolds of special holonomy, and allowing for membrane charges, the 
metric takes the form

The membranes extend along the Minkowski and 9 directions. In these cases, 
the flux is given by

ds2 = L−1ds2( 1,1) + ds2(MG2
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III. The AdS limit and supersymmetry 
conditions

To take the AdS limit of the wrapped brane metrics and supersymmetry 
conditions, we must pick an AdS radial direction out of the space transverse to 
the Minkowski factor, by performing an appropriate frame rotation. Generically, 
the AdS radial direction will be a linear combination of a radial direction 
transverse to the cycle in the backreacted special holonomy manifold, and the 
radial direction on the overall transverse space. We must also impose the AdS 
isometries and symmetries on the metric and the flux. Employing this 
procedure for the co-associative example, the metric becomes

Since we have picked out a preferred direction (that containing the AdS radial 
direction) in the G_2 structure manifold, the structure group of the spacetime 
reduces to SU(3). The wrapped brane torsion conditions reduce in the AdS limit 
to

while the flux is given by
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+ ρ2dθ2

)]

+ ds2(MSU(3)). (2)

λ−1/2dr = cos θû + sin θv̂,
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III. The AdS limit and supersymmetry conditions

For the remaining cycles in manifolds with d<8, the supersymmetry conditions 
are qualitatively similar. For cycles in eight- or ten-manifolds, we have so far only 
worked out the AdS conditions for Kähler four-cycles in SU(4) manifolds 
(remainder in progress). Some general comments may be made:

• Generically, supersymmetry conditions imply that some, but not all, field 
equations/ Bianchi identities are identically satisfied. For M5s wrapping cycles in 
manifolds with d<8, the wrapped brane supersymmetry conditions imply all 
field equations, but not the Bianchi identity. However the Bianchi identity is 
solved by the AdS limit. With d!8, one must in contrast impose the four-form 
field equations and Bianchi identity in addition to the wrapped brane 
supersymmetry conditions. In the AdS limit, the four-form field equation is 
satisfied, but the Bianchi identity must still be imposed.

• In every case we have analysed, the isometries of the AdS limits (which are 
encoded in the wrapped brane geometries) match the R-symmetries expected 
for the CFT duals. 

• Where general classifications of AdS spacetimes in M-theory have been 
performed independently (N=1, AdS_3, N=1,  AdS_4, N=1,2,  AdS_5) the 
conditions we derive via our procedure match those already in the literature. 
This is strongly suggestive evidence that we are getting the most general AdS 
supersymmetry conditions in each class.
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IV. New explicit solutions

For the case of M5 branes wrapping Kähler four-cycles in Calabi-Yau four-folds, 
we have found many new infinite families of warped AdS_3 solutions, dual to 
two dimensional N=(2,0) CFTs. The construction has many features in common 
with, and was directly inspired by, the construction of the        , which arise 
from the near-horizon geometry of M5s wrapping Kähler two-cycles in Calabi-
Yau three-folds. The new solutions are all      bundles over six-dimensional base 
spaces      , which are products of Kähler-Einstein manifolds. The new compact 
regular solutions involve one of the following choices for     :

Of particular interest are those with a      factor, as these may be reduced and 
dualised to IIB.  There are eight possibilities for a positive scalar curvature 
Kähler-Einstein four-manifold: 

For                        , upon reduction and T-duality to IIB, the metric becomes
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Y p,q (2)

S2 B6 (3)

S2
× S2

× H2, KE+
4 × H2;

H2
× H2

× S2, KE−

4 × S2;

S2
× S2

× T 2, KE+
4 × T 2. (4)

1
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where

and a is constant. Only the five-form flux is non-vanishing, and the dilaton is 
constant. Topologically M_7 is a U(1) bundle over a six-manifold which is itself a 
S^2 bundle over a positive scalar curvature Kähler-Einstein four-manifold. 
Global regularity conditions imply the quantisation of a and the period of the 
coordinate z. Furthermore, flux quantisation implies the quantisation of the AdS 
length l, and we may compute the central charges of the field theory duals 
according to

to be

Here m and M are integers which depend on the topology of M_7.

IV. New explicit solutions

ilarities with the construction of the AdS5 solutions con-
structed in [11,12]. Indeed the latter references provided
key inspiration for the work presented here and in [10].

In the remainder of this letter we present the detailed
local form of the new solutions and then determine the
conditions that need to be imposed in order for the local
solutions to extend to global solutions.

The local solutions. The type IIB solutions have a
metric that is a warped product of AdS3 with a seven
dimensional manifold M7:

ds2 = L2w
[

ds2(AdS3) + ds2(M7)
]

. (2)

The warp factor, w, just depends on the coordinates
on M7 and hence this metric has all of the isometries
of ds2(AdS3). If KE4 is an arbitrary positively curved
Kähler-Einstein manifold with metric ds2

KE4
and Kähler-

form J , then the metric on M7 is given by

ds2(M7) =
3

8y
ds2

KE4
+

9dy2

4q(y)
+

q(y)Dψ2

16y2(y2 − 2y + a)

+
y2 − 2y + a

4y2
Dz2 , (3)

where Dψ = dψ + P , Dz = dz − g(y)Dψ, and

g(y) =
a − y

2(y2 − 2y + a)
,

q(y) = 4y3 − 9y2 + 6ay − a2 . (4)

Here a is a constant, dP = J and in these coordinates
the warp factor is simply w = y. We have chosen nor-
malisations so that ds2

AdS3
is the metric on a unit radius

AdS3 and R = J , where R is the Ricci form of KE4, and
the constant L is arbitrary, reflecting the scaling symme-
try of the type IIB supergravity action. The only other
non-zero type IIB field in the solution, other than the
string coupling gs, is the self-dual five-form which can be
written:

gsF5 = L4 [volAdS3
∧ ω2 + J ∧ ω3] , (5)

where

ω2 = −a

4
J +

y(a − y)

2(y2 − 2y + a)
dy ∧ Dψ + y dy ∧ Dz ,

ω3 =
3(y − a)

64y
J ∧ Dz +

3a

64y2
dy ∧ Dψ ∧ Dz

+
3q(y)

128y(y2 − 2y + a)
J ∧ Dψ , (6)

and volAdS3
is the volume-form of ds2(AdS3). Note both

∂ψ and ∂z are Killing vectors, and thus the symmetry
group of the background, including F5, is at least G ×
U(1)2 where G is the group of the isometries of KE4 that
preserve J .

In [10] we show how to derive this class of solutions
from a more general family of solutions of D = 11 su-
pergravity. We also explicitly discuss the preservation of
supersymmetry arguing that the solutions must be dual
to conformal field theories with N = (0, 2) supersymme-
try. Furthermore, the form of the Killing spinors implies
that ∂ψ generates the isometry dual to the U(1)R sym-
metry of the field theory. Here, instead, we show that
we do indeed have a solution by simply comparing with
the elegant analysis of the most general type IIB super-
gravity solutions with AdS3 factors and non-vanishing
F5 presented in [13]. There it was shown that the metric
ds2(M7) can always, locally, be written as a U(1) fibra-
tion over a six-dimensional Kähler manifold satisfying
some additional properties. Introducing the new coordi-
nates ψ = ψ′ − 2z′, z = −2z′, and identifying z′ as the
coordinate on the U(1) fibration, one can check that our
solution satisfies all of the conditions in [13] (one needs
to take into account a rescaling of the five-form flux and
also a typo in (3.22) of [13]).

Global Analysis. We now need to show that the local
solution given above can be defined globally. First we
need to fix the global structure of M7. We will assume
that M7 is an S1 bundle (with the fibre parametrised
by z) over a compact six-dimensional base manifold, B6.
The metric on B6 is given by

ds2(B6) =
3

8y
ds2

KE4
+

9dy2

4q(y)
+

q(y)Dψ2

16y2(y2 − 2y + a)
. (7)

For a suitable choice of the range of a and y, one can
take B6 to be an S2 bundle (with the fibre parametrised
by y, ψ) over KE4. More precisely, if L is the canon-
ical line bundle of KE4, the S2 bundle is obtained by
adding a point to each fibre. Topologically M7 is the
same manifold that was used in the construction of seven-
dimensional Sasaki-Einstein metrics found in [9].

We first need to show that the metric (7) on B6 is
complete and regular. It has potentially singular points
at the roots of the cubic polynomial q(y), at the roots
of the quadratic polynomial y2 − 2y + a and at y = 0.
If we assume that a ∈ (0, 1) then the three roots yi of
q(y) are real and strictly positive. If we let y1 < y2 < y3

then y1, y2 ∈ (0, 1). Furthermore, y2 − 2y + a is strictly
positive in the interval (y1, y2). Thus, by choosing the
range of y ∈ (y1, y2) we are left with potential problems
only at y1, y2, where gyy diverges and gψψ vanishes. How-
ever, these are merely coordinate singularities analogous
to those of polar coordinates at the origin of R2. Near y1

and y2 (and, in fact, also y3) the (y, ψ) part of the metric
takes the approximate form

9
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]

, (8)

where we defined ri = 2
√

y − yi. The observation that
q′(y)2 − 144y2(y2 − 2y + a) = −36q(y) for any y, shows
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For every positively curved Kähler-Einstein manifold in four dimensions we construct an infinite
family of supersymmetric solutions of type IIB supergravity. The solutions are warped products of
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AdS/CFT correspondence, the solutions are dual to two-dimensional conformal field theories with
(0, 2) supersymmetry. The corresponding central charges are rational numbers.
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The AdS/CFT correspondence [1] states that any solu-
tion of string or M-theory with an AdSd+1 factor should
be equivalent to a conformal field theory (CFT) in d
spacetime dimensions. This correspondence, and its gen-
eralisations, has provided profound insight into the non-
perturbative structure of string theory, the structure of
quantum field theory and the quantum properties of
black holes.

Backgrounds with AdS3 factors are of particular in-
terest because, unlike in higher dimensions, the confor-
mal group in two-dimensions is infinite dimensional. As
a consequence two-dimensional conformal field theories
are much more tractable than their higher dimensional
cousins; for instance, many models are exactly solvable,
and there is a considerable literature on the subject. It
would be a significant development if, via the AdS/CFT
correspondence, string or M-theory can make contact
with this large body of work.

However, until now there were only a few known ex-
plicit AdS3 ×M solutions, with compact M. The most
well studied class of examples are the AdS3 × S3 × X
backgrounds of type IIB supergravity, where X = T 4 or
K3. These are dual to N = (4, 4) conformal field theories
that are deformations of the sigma model based on the
orbifold Sym(X)n/Sn. From a string theory perspective,
these backgrounds describe the backreaction of a D-brane
configuration that can be related to a black hole in five
dimensions. It is a remarkable fact that the entropy of
this black hole can be precisely derived from the central
charge of the dual conformal field theory [2].

There have also been recent investigations into the con-
formal field theory dual to the AdS3×S3×S3×S1 back-
ground of type II string theory [3] (see [4]– [8] for earlier
discussions). Despite the fact that the field theory has
a larger version of N = (4, 4) superconformal symmetry
than those dual to the AdS3 × S3 × X solutions, it has
proved more difficult to identify them as a number of
subtleties arise.

The purpose of this letter is to present a new infinite
class of supersymmetric AdS3 backgrounds of type IIB
string theory, which are dual to two-dimensional confor-
mal field theories with N = (0, 2) supersymmetry. It will
be very interesting if these conformal field theories can
be explicitly identified. It will also be very interesting

to know whether or not our solutions can be related to
black holes.

The new solutions are warped products of AdS3 with a
compact seven-dimensional manifold M7 and have non-
trivial self-dual five-form. The manifold M7 is con-
structed as a U(1) fibration over a six-dimensional man-
ifold B6. In turn B6 is an S2 bundle over an arbitrary
Kähler-Einstein manifold KE4 with positive curvature.
Such KE4 manifolds are either S2 × S2, CP2 or a del-
Pezzo surface dPk with k = 3, . . . , 8. For each such
KE4 we have an infinite discrete number of explicit so-
lutions parametrised by two positive integers p and q,
together with an integer n which specifies the D3-brane
charge. The fibration structure implies that the group
of symmetries preserving the solutions contains at least
two U(1) factors, one of which corresponds to the R-
symmetry of the dual conformal field theory. The con-
struction is remarkably similar to the construction of
seven-dimensional Sasaki-Einstein manifolds presented in
[9], but we do not know of any direct connection.

As we shall show, the standard supergravity compu-
tation gives a rational central charge c for the dual two-
dimensional superconformal field theories. Specifically

c =
9p q2(p + mq)

3p2 + 3mpq + m2q2

Mq

m2h2
n2 , (1)

where the integers m and M depend on the specific choice
of KE4: for S2 × S2 we have m = 2, M = 8; for CP2

we have m = 3, M = 9; for the del-Pezzos dPk, we have
m = 1, M = 9 − k. Finally, h = hcf{M/m2, q}.

The type IIB solutions presented here were constructed
from a much richer set of solutions of D = 11 super-
gravity that will be described elsewhere [10]. The lat-
ter solutions are warped products of AdS3 with eight-
dimensional manifolds that are topologically S2 bundles
over six-dimensional Kähler spaces. In the special case
that the six-dimensional manifold is KE4 × T 2, dimen-
sional reduction along one leg of the T 2 and T -duality
along the other leg leads to the solutions presented here.
In the companion paper [10] we will also show that when
the six-dimensional manifold is S2 × S2 × T 2, with the
S2 having different radii, we obtain additional general-
isations of the type IIB solutions presented here. The
construction of these new AdS3 solutions has many sim-
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V. Conclusions

• We are systematically charting the supersymmetric AdS landscape of M-theory. 
We do this by first identifying the brane configurations which can give rise to 
AdS spacetimes of different dimensionalities and preserving different amounts 
of supersymmetry. Having derived the supersymmetry conditions for the 
wrapped branes, we employ a simple limiting procedure to obtain the 
supersymmetry conditions for the AdS spaces they contain in their near-
horizon geometry.

• We have used these supersymmetry conditions in the case of M5 branes 
wrapping Kähler four-cycles in Calabi-Yau four-folds to obtain many new 
families of AdS_3 solutions, dual to two dimensional N=(2,0) CFTs. In 
particular, we have found eight doubly countably infinite families which may be 
reduced and dualised to give new regular AdS_3 compactifications of IIB, and 
have computed the central charge of the dual field theories. It would be very 
interesting to construct the field theory duals.

• It is to be hoped that the results of the classification will facilitate the discovery 
of more explicit new solutions in the future. The results for AdS_2 and AdS_3 
will certainly be of relevance to the study of supersymmetric black holes and 
black rings in M-theory.
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