

## 10/10/2006

# Metastable Supersymmetry Breaking and Gauge/Gravity Duality

Riccardo Argurio (ULBrussels)

Based on work in progress with M. Bertolini, S. Franco and S. Kachru Dynamical Supersymmetry breaking (DSB) in a stable vacuum is displayed only in few chiral (and complicated) models.

An alternative is DSB in a metastable "vacuum"  $\equiv$  only locally stable. (Dimopoulos, Dvali, Rattazzi, Giudice '97)

at classical level

(Meta)stability:

- + lifting of pseudo-moduli
- + long enough lifetime

# Metastable DSB using Seiberg dualities

```
(Intriligator, Seiberg, Shih '06)
```

 $SU(N_c)$  SQCD with  $N_c \leq N_f < rac{3}{2}N_c$  and  $m \ll \Lambda$ 

Electric: IR strongly coupled

Magnetic: IR free  $M, q, \tilde{q}$ 

Canonical Kähler potential,  $W = mM - \mu q M \tilde{q}$ .

DSB by rank condition ( $F_M \neq 0$ ) around M = 0 with

$$V_{\rm meta} \sim N_c |m|^2$$

(SUSY vacua at  $M \neq 0$ )

## Metastable DSB in gravity/string theory

Introduce  $p \overline{D3}$ -branes in the Klebanov-Strassler background created by M fractional branes.

#### (Kachru, Pearson, Verlinde '01)

D3s are attracted to the smoothed tip, but they cannot annihilate perturbatively (if  $p \ll M$ , otherwise Myers effect).

These are metastable states of the  $SU(2M-p) \times SU(M-p)$  gauge theory.

### Warning / Problem

Properties of non SUSY states are <u>not</u> protected when parameters are varied, e.g.

$$\lambda = g_{YM}^2 N \equiv g_s N$$

from small (gauge theory) to large (gravity).

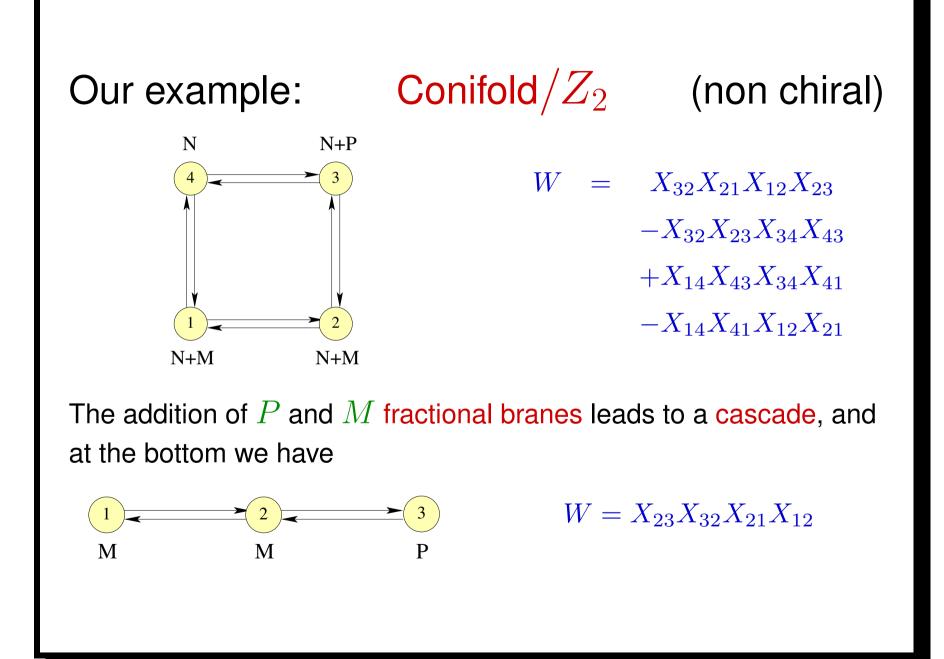
(Local) stability is not granted to persist on both sides.

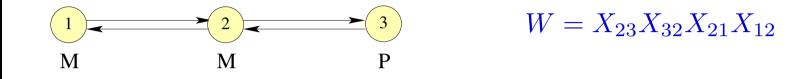
ISS in gravity ?

KPV in gauge theory ?

Set up which is under reasonable control on both sides:

 $\mathcal{N}=1$  Quiver gauge theories from D3s at singularities, with no external flavors.


In order to find a subsector similar to massive SQCD we need to generate masses dynamically


 $W = XYZ \rightarrow W = \langle X \rangle YZ, \quad \langle X \rangle \neq 0$ 

But since  $V \sim |\langle X \rangle|^2$ , the VEV  $\langle X \rangle$  must be constrained otherwise  $V \to 0$ .

Interesting way out: X is a meson in  $N_f = N_c$  SQCD, so that

$$\det X = \Lambda^{2N_c} \qquad (B = \tilde{B} = 0)$$





 $SU(M)_1$  has  $N_f = N_c$ . Mesons  $\mathcal{M} = X_{21}X_{12}, \langle \mathcal{M} \rangle \neq 0$ .

 $\rightarrow$  mass for  $SU(P)_3$  flavors:  $W = \langle \mathcal{M} \rangle X_{23} X_{32}$ .

Vacuum energy is  $V \sim \sum_{i=1}^{P} |m_i|^2$ .

So  $\det \langle \mathcal{M} \rangle = \Lambda^{2M}$  keeps V > 0 only if P = M.

In ISS the case of  $N_f = N_c$  SQCD is more subtle.

- Pseudo-moduli are still massless at one-loop.
- Need to have a good estimate of the lifetime.

#### But:

Argument following the decoupling of one massive flavor from  $N_f = N_c + 1$  SQCD.

# **Dual geometry**

The singular geometry is  $x^2y^2 = uv$ .

The SUSY vacuum corresponding to the 3-node quiver with equal ranks is

$$(xy - \epsilon)^2 = uv$$

with D5-branes wrapped on a small  $S^2$  at the line of  $C^2/Z_2$  singularities  $xy = \epsilon$ .



Add  $M \overline{D3}$ -branes (not more, not less)

 $\rightarrow$  they are **attracted** to the tip and more specifically to the wrapped D5-branes.

 $\rightarrow$  they get dissolved as gauge flux.

Possibly, no Myers effect here due to cancellations.

Warning: Stability to be checked; beyond probe approximation



• Full SUGRA analysis: backreaction of wrapped *D*5-branes. (But: possibly orbifold of Klebanov-Strassler.)

• Generalizations possible  $\rightarrow$  many other non chiral quivers.

\* Try also other interesting settings, e.g. chiral (runaway) quivers like  $dP_1$ ...