Towards the String Dual of N=1 SQCD-like Theories

based on hep-th/0602027 (RC, C. Núñez, A. Paredes)

Roberto Casero CPhT - Ecole Polytechnique and CNRS

RTN Workshop Napoli - October 13th 2006

Motivations

The string/gauge correspondence proposes that

and might help us understand strong coupling effects:

- confinement
- gaugino condensation
- mass gap

Motivations

How do we include flavors in the string/gauge correspondence?

We need to insert probe flavor branes

Karch Katz 2002

Real-world QCD has $N_f \sim N_c$ flavors: we want to go beyond the probe approximation

> Otherwise we would miss many interesting phenomena, like: baryons, screening, ...

Motivations

Real-world QCD has $N_f \sim N_c$ flavors: we want to go beyond the probe approximation

What does the dual background look like? What are its characteristics?

Background symmetries: $SU(2) \times SU(2) \times U(1)$ The spectrum also contains KK modes

and $M_{KK} \sim \Lambda_{QCD}$!

MN background: $g_{\mu\nu}$, φ , F_3

Adding many flavors to MN $U(I)_R$

MN background: $g_{\mu\nu}$, ϕ , F_3 preserved

MN background: $g_{\mu\nu}$, φ , F_3

MN background: $g_{\mu\nu}$, φ , F_3

since there are many D5 flavor branes their backreaction on the background cannot be neglected closed strings $S = \frac{1}{2\kappa_{(10)}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + open strings$ $+ T_5 \sum^{N_f} \left(-\int_{\mathcal{M}_6} d^6 x e^{\frac{\phi}{2}} \sqrt{-\hat{g}_{(6)}} + \int_{\mathcal{M}_6} P[C_6] \right)$

MN background: $g_{\mu\nu}$, φ , F_3

MN background: $g_{\mu\nu}$, φ , F_3

The smearing of the D5 flavor branes restores all the original symmetries of the background

$$S = \frac{1}{2\kappa_{(10)}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left(\frac{1}{2} - \frac{1}{2} (\partial_\mu \phi) \right) + C_{(10)}^2 \left($$

 $-\frac{T_5 N_f}{(4\pi)^2} \left(\int d^{10} x \sin \theta \sin \tilde{\theta} e^{\frac{\phi}{2}} \sqrt{-\hat{g}_{(6)}} - \int Vol(Y_4) \wedge C_{(6)} \right)$ smearing

$$S = \frac{1}{2\kappa_{(10)}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \frac{1}{12} e^{\phi} F_3^2 \right) + \frac{T_5 N_f}{(4\pi)^2} \left(\int d^{10}x \sin \theta \sin \tilde{\theta} e^{\frac{\phi}{2}} \sqrt{-\hat{g}_{(6)}} - \int Vol(Y_4) \wedge C_{(6)} \right)$$

$$\frac{1}{2\kappa_{(10)}} \int_{S^3} F_{(3)} = N_c T_5$$
$$dF_3 = \frac{N_f}{4} \sin\theta \sin\tilde{\theta} d\theta \wedge d\phi \wedge d\tilde{\theta} \wedge d\tilde{\phi}$$

We solve the first-order BPS equations numerically All solutions are singular at the origin

N=I SQCD + quartic + ...

The MN background is dual to N=1 SYM plus KK modes

$$\mathcal{L} = \mathcal{L}_{\mathcal{N}=1 \text{ SYM}} + \text{kinetic terms} + \mu \Phi_{KK}^2 + \kappa \tilde{Q} \Phi_{KK} Q + \dots$$

we add massless quarks

If we integrate out the massive KK modes, N=1 SQCD receives a quartic superpotential contribution

$$\mathcal{W} \sim \frac{\kappa^2}{\mu} \tilde{Q} Q \tilde{Q} Q + \dots$$

- The flavor group is explicitly broken $SU(N_f) \times SU(N_f) \rightarrow SU(N_f)_{diag}$

 $-\mu \rightarrow \infty \quad \Leftrightarrow \quad \text{``pure'' } N=I \text{ SQCD } \longrightarrow \text{ non-critical strings}$

Gauge theory features

β function

For large ρ we have

$$\frac{4\pi^2}{g_{sqcd}^2} \sim N_c(1-\frac{x}{2})\rho + \dots \qquad \log\frac{\mu}{\Lambda} \sim -\frac{1}{3}\log a \sim -\frac{1}{3}\log b \sim -\frac{2}{3}\rho$$

$$\beta = \frac{dg_{sqcd}}{d\log\frac{\mu}{\Lambda}} = -\frac{3g_{sqcd}^3}{32\pi^2}(2N_c - N_f) + \dots$$

U(I)_R breaking

The U(I)_R symmetry is associated to shifts of the ψ angle $\psi \rightarrow \psi + 2\epsilon$

This changes $\theta_{sqcd} \sim \theta_{sqcd} + 2\pi n$ unless $\varepsilon = \frac{2\pi n}{2N_c - N_f}$ $n = 1, 2, ..., 2N_c - N_f$

This matches the anomaly of the $U(I)_R$ in N=I SQCD

$$U(1)_R \to \mathbb{Z}_{2N_c-N_f} \to \mathbb{Z}_2$$

Wilson loop and screening

The Wilson loop can be evaluated as the energy of a string joining two very massive quarks, as a function of its length

This is what one expects from a confining theory with fundamental degrees of freedom: screening

Gauge theory features

Seiberg duality

Very schematically Seiberg duality states the identity of the IR dynamics of two different theories with

 $SU(N_c) + N_f$ flavors $\leftrightarrow SU(N_f - N_c) + N_f$ flavors

In our setup the number of colors is

$$N_c T_5 = \frac{1}{2\kappa_{(10)}} \int_{\tilde{S}^3} F_3$$

and the number of flavors is fixed by

 $dF_3 \sim N_f \dots$

The internal space in our geometry is a fibration of a 3-sphere over a 2-sphere

There is an ambiguity in the identification of the 3-sphere

Seiberg duality

With one choice for the three-sphere in the geometry we have

$$N_c T_5 = \frac{1}{2\kappa_{(10)}} \int_{\tilde{S}^3} F_3 \qquad \qquad dF_3 \sim N_f \dots$$

with the other, instead

$$(N_f - N_c) T_5 = \frac{1}{2\kappa_{(10)}} \int_{S^3} F_3 \qquad dF_3 \sim N_f \dots$$

which is the way colors and flavors transform under Seiberg duality.

Moreover the two ways of writing the geometry coincide in the IR region: we interpret this as identity of the IR dynamics

Seiberg duality is encoded very naturally in this dual description of N=1 SYM + flavors

- Backreaction of flavor branes by adding an open string sector to the gravity action
- Gravity + branes dual of N=I SQCD + quartic
- Many field theory features match
 - Wilson loop and screening
 - $U(I)_R$ anomaly and β function
 - Seiberg duality
 - x<| and x>|