pp-Wave Matrix Models from Point-Like Gravitons

Yolanda Lozano
University of Oviedo
(based on JHEP08 (2006) 022)

Motivation

1. The fuzzy 5 -sphere vacuum in BMN
2. Type IIB pp-wave matrix models

Results

Starting with the action for coincident gravitons:

1. Physical matrix model admitting a fuzzy 5 -sphere as a supersymmetry preserving solution
2. Type IIB pp-wave matrix model with the right fuzzy 3 -sphere solutions

Outline

1. The action for coincident gravitons
2. pp-wave matrix models from point-like gravitons

THE ACTION FOR COINCIDENT GRAVITONS

- Motivation: Microscopical description of giant gravitons
- Construction
- Check: Giant gravitons in $A d S_{m} \times S^{n}$

The construction
D0-branes are gravitons in M-theory, moving along the 11th direction:

M:
M0
M2
M5

IIA: wave
D0
F1
D2
D4
NS5
\Rightarrow Uplift Myers action for N D0-branes

Matrix Theory calculation:

- Matrix string theory: (Non-Abelian) Type IIA strings with nonzero light-cone momentum
- Sen-Seiberg limit + Static gauge \rightarrow (Non-Abelian) massless particles with spatial momentum (IIA gravitational waves) (Janssen \& Y.L. '02)

Dielectric couplings?: Matrix string theory in a weakly curved background (Schiappa '00; Brecher, Janssen \& Y.L. '01):

$$
S=S_{\text {flat }}+S_{\text {linear }}
$$

$S_{\text {linear }} \supset$ dielectric couplings

$$
\begin{gathered}
S_{\text {linear }}=\int \operatorname{STr}\left\{\frac{1}{2} h_{A B} T^{A B}+C_{A B C}^{(3)} J^{A B C}+C_{A B C D E F}^{(6)} M^{A B C D E F}\right\} \\
(\text { Kabat \& Taylor ' } 98)
\end{gathered}
$$

Sen-Seiberg limit:
$S_{N D 0}^{(\text {linear })}=\int \operatorname{STr}\left\{\frac{1}{2} h_{a b} I_{h}^{a b}+\phi I_{\phi}+B_{a b}^{(2)} I_{s}^{a b}+C_{a}^{(1)} I_{0}^{a}+C_{a b c}^{(3)} I_{2}^{a b c}+\ldots\right\}$
(Taylor \& Van Raamsdonk '99)
with

$$
C_{a}^{(1)} I_{0}^{a}=P\left[C^{(1)}\right] ; \quad C_{a b c}^{(3)} I_{2}^{a b c}=i P\left[i_{X} i_{X} C^{(3)}\right]
$$

\rightarrow Precise agreement with the linear expansion of Myers action

The action for M-theory gravitons

$$
\begin{aligned}
S= & T_{0} \int d \tau \operatorname{STr}\left\{-k^{-1} \sqrt{E_{00}+E_{0 i}\left(Q^{-1}-\mathbb{1}\right)_{k}^{i} E^{k j} E_{j 0}} \sqrt{\operatorname{det} Q}\right. \\
& \left.-k^{-2} k_{i} \partial X^{i}+i\left(i_{X} i_{X}\right) C^{(3)}+\frac{1}{2}\left(i_{X} i_{X}\right)^{2} i_{k} C^{(6)}+\ldots\right\}
\end{aligned}
$$

k^{μ} : Killing vector pointing along the direction of propagation (isometric \leftrightarrow momentum eigenstate (\leftrightarrow superstar solutions smeared in the ϕ-direction (Myers \& Tafjord '01)))

$$
E=\mathcal{G}+k^{-1}\left(i_{k} C^{(3)}\right), \quad Q_{j}^{i}=\delta_{j}^{i}+i k\left[X^{i}, X^{k}\right] E_{k j}
$$

In the Abelian limit: Legendre transformation :

$$
S[\gamma]=-\frac{T_{0}}{2} \int d \tau \sqrt{|\gamma|} \gamma^{-1} \partial X^{\mu} \partial X^{\nu} g_{\mu \nu}
$$

Check: Giant gravitons in $A d S_{m} \times S^{n}$

- S^{2} giant gravitons:
- Fuzzy 2-sphere solutions
- $P_{\phi} \neq 0, C_{\phi i j}^{(3)} \neq 0$
- Exact agreement with GST in the large N limit
- S^{3} giant gravitons:

$A d S_{5} \times S^{5}$

IIB background \Rightarrow Action for Type IIB gravitons
T-duality direction isometric $\leftrightarrow l^{\mu}$

$$
E=\mathcal{G}-k^{-1} l^{-1} e^{\phi}\left(i_{k} i_{l} C^{(4)}\right)
$$

- Fuzzy 3 -sphere solutions: S^{1} bundles over fuzzy 2 -spheres
- $P_{\phi} \neq 0, C_{\phi \chi i j}^{(4)} \neq 0$
- Exact agreement with GST in the large N limit
- S^{1} giant gravitons: Fuzzy cylinders
- S^{5} giant gravitons: S^{1} bundles over fuzzy $C P^{2}$

PP-WAVE MATRIX MODELS FROM POINT-LIKE GRAVITONS

The BMN matrix model gives the dynamics of DLCQ M-theory in the sector with momentum $2 p^{+}=-p_{-}=N / R$

It contains a dielectric coupling to the 3 -form potential which supports a fuzzy 2 -sphere vacuum solution

There should be as well a fuzzy 5 -sphere vacuum which is however not supported by a dielectric coupling (BMN: non-perturbative origin)
x^{-}is a null direction, but BMN can be derived from the action for M-theory gravitons taking into account that before Penrose limit $p_{\phi}=-p_{-} \frac{\mu L^{2}}{3}$, so that $p_{-}=-N / R \Leftrightarrow p_{\phi}=N$ and $R=\mu L^{2} / 3$

The BMN matrix model with coupling to the 6 -form potential

1. Take in the BMN background

$$
\begin{aligned}
& d s^{2}=-4 d x^{+} d x^{-}-\left[\left(\frac{\mu}{3}\right)^{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(\frac{\mu}{6}\right)^{2} y^{2}\right]\left(d x^{+}\right)^{2} \\
&+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d y^{2}+y^{2} d \Omega_{5}^{2} \\
& C_{+i j}^{(3)}= \frac{\mu}{3} \epsilon_{i j k} x^{k} \quad i, j=1,2,3 \quad C_{+\gamma_{1} \ldots \gamma_{5}}^{(6)}=-\frac{\mu}{6} y^{6} \sqrt{g_{\gamma}} \\
& d \Omega_{5}^{2}=(d \chi-A)^{2}+d s_{C P^{2}}^{2} \text { and } k^{\mu}=\delta_{\chi}^{\mu}
\end{aligned}
$$

2. Use that $C P^{2}$ can be defined as the submanifold of \mathbb{R}^{8} determined by the constraints:

$$
\left(z^{a}\right)^{2}=1, \quad d^{a b c} z^{b} z^{c}=\frac{1}{\sqrt{3}} z^{a}
$$

In these coordinates

$$
d s_{C P^{2}}^{2}=\sum_{a=1}^{8}\left(d z^{a}\right)^{2} \quad C_{+\chi a b c d}^{(6)}=\frac{\mu}{3} y^{6} f_{[a b e e} f_{c d] f} z^{e} z^{f}
$$

and $C^{(6)}$ couples in the CS action through $\left(i_{Z} i_{Z}\right)^{2} i_{k} C^{(6)}$

Using the action for M-theory gravitons in this background

$$
\begin{aligned}
H= & -\int d x^{+} \operatorname{STr}\left\{\frac{1}{4 R}\left(\dot{X}^{2}+\dot{y}^{2}+y^{2} \dot{Z}^{2}\right)-\frac{1}{4 R}\left(\frac{\mu^{2}}{9} X^{2}+\frac{\mu^{2}}{36} y^{2}\right)+\right. \\
& +\frac{1}{2} R[X, X]^{2}-\frac{1}{16} R y^{10}[Z, Z]^{4}+i \frac{\mu}{3} \epsilon_{i j k} X^{k} X^{j} X^{i}- \\
& \left.+\frac{\mu}{6} y^{6} f_{[a b e} f_{c d] f} Z^{d} Z^{c} Z^{b} Z^{a} Z^{e} Z^{f}\right\}
\end{aligned}
$$

The fuzzy 5 -sphere solution

Make non-commutative the $C P^{2}$ base manifold
$C P^{2}$ base manifold \rightarrow Fuzzy $C P^{2}$
Fuzzy $S^{5}=S^{1}$ bundle over a fuzzy $C P^{2}$
The constraints

$$
\left(z^{a}\right)^{2}=1, \quad d^{a b c} z^{b} z^{c}=\frac{1}{\sqrt{3}} z^{a}
$$

can be realized at the level of matrices taking

$$
Z^{a}=\frac{1}{\sqrt{C_{N}}} T^{a} \quad \text { with } \quad T^{a}, a=1, \ldots 8, \text { generators of } S U(3)
$$

in the irreps $(n, 0)$ or $(0, n)$

Taking the ansatz $r=X^{i}=0, y, Z^{a}$ time independent: 5 -sphere vacuum solution with radius

$$
y=\left(\frac{\mu\left(n^{2}+3 n\right)}{3 R}\right)^{1 / 4} \sim\left(-\frac{2}{3} \mu p_{-}\right)^{1 / 4} \quad \text { for large } N
$$

\rightarrow Exactly as the 5 -sphere giant graviton of GST

Compare to the $S_{\text {fuzzy }}^{n}, n>2$, constructed as $S O(n+1)$-covariant matrix realizations of the condition $\sum_{i=1}^{n+1}\left(X^{i}\right)^{2}=\mathbb{1}$:

- Complicated technically (Ramgoolam'01,'02)
- The construction with a fuzzy S^{5} scales like $\left(-p_{\phi}\right)^{1 / 5}$ (Nastase'04)

Type II pp-wave matrix models

Type IIA : Matrix string theory in the pp-wave background of Sugiyama \& Yoshida'02 and Das, Michelson \& Shapere'03 from the action for Type IIA gravitons

Type IIB

1. Take in the maximally supersymmetric IIB pp-wave background

$$
\begin{aligned}
& d s^{2}=-2 d x^{+} d x^{-}-\mu^{2}\left(r^{2}+y^{2}\right)\left(d x^{+}\right)^{2}+d r^{2}+r^{2} d \Omega_{3}^{2} \\
& \quad+d y^{2}+y^{2} d \tilde{\Omega}_{3}^{2} \\
& C_{+\alpha_{1} \alpha_{2} \alpha_{3}}^{(4)}=-\mu r^{4} \sqrt{g_{\alpha}}, \quad C_{+\gamma_{1} \gamma_{2} \gamma_{3}}^{(4)}=-\mu y^{4} \sqrt{g_{\gamma}}
\end{aligned}
$$

$d \Omega_{3}^{2}=(d \chi-A)^{2}+d \Omega_{2}^{2}$ and $k^{\mu}=\delta_{\phi}^{\mu}, l^{\mu}=\delta_{\xi}^{\mu}$ with $\xi=(\chi+\tilde{\chi}) / 2$
2. Use Cartesian coordinates to parametrize the S^{2}

Proposal for the Type IIB matrix model:

$$
\begin{aligned}
S= & \int d x^{+} \operatorname{STr}\left\{\frac{1}{2 R}\left(\dot{r}^{2}+\dot{y}^{2}+\frac{r^{2}}{4} \dot{X}^{2}+\frac{y^{2}}{4} \dot{Z}^{2}\right)-\frac{\mu^{2}}{2 R}\left(r^{2}+y^{2}\right)+\right. \\
& +\frac{1}{256} R\left(r^{2}+y^{2}\right)\left(r^{4}[X, X]^{2}+y^{4}[Z, Z]^{2}+2 r^{2} y^{2}[X, Z]^{2}\right)+ \\
& \left.-i \frac{\mu}{8} r^{4} \epsilon_{i j k} X^{i} X^{j} X^{k}-i \frac{\mu}{8} y^{4} \epsilon_{a b c} Z^{a} Z^{b} Z^{c}\right\}
\end{aligned}
$$

Check: It contains fuzzy 3 -sphere vacua with the right continuum limit. These fuzzy S^{3} are defined as S^{1} bundles over fuzzy S^{2}.

Candidate to the holographic description of strings in the pp-wave background. Compare to Sheikh-Jabbari's Tiny graviton matrix theory

CONCLUSIONS

1. pp-wave matrix model containing the fuzzy 5 -sphere giant graviton as a supersymmetry preserving solution

- BMN plus a quadrupolar coupling to the 6 -form potential
- More "non-perturbative" \leftrightarrow The direction of propagation of the gravitons and the geometrical S^{1} have been interchanged
- BMN as a theory of coincident gravitons

2. Same idea in Type IIB: pp-wave matrix model containing fuzzy 3 -sphere giant graviton solutions
Compare to Sheikh-Jabbari's Tiny graviton matrix theory

Sheikh-Jabbari'04:
Regularize the light-cone 3-brane action
3 -sphere vacua carrying N units of light-cone momentum in terms of N expanding gravitons each carrying one unit of light-cone momentum \rightarrow Tiny gravitons

- $U(N)$ gauge theory with 6 non-Abelian scalars plus 2 Abelian vs 8 non-Abelian scalars plus \mathcal{L}_{5}
- Simpler realization of the fuzzy 3 -sphere + right continuum limit

